The Journal of
the Korean Journal of Metals and Materials

The Journal of
the Korean Journal of Metals and Materials

Monthly
  • pISSN : 1738-8228
  • eISSN : 2288-8241

Editorial Office

Title Influence of Te Vacancies on the Thermoelectric Properties of n-type Cu0.008Bi2Te2.7-xSe0.3
Authors 양예림(Yerim Yang); 김태완(Taewan Kim); 홍석원(Seokown Hong); 안지우(Jiwoo An); 김상일(Sang-il Kim)
DOI https://doi.org/10.3365/KJMM.2020.58.10.721
Page pp.721-727
ISSN 1738-8228(ISSN), 2288-8241(eISSN)
Keywords thermoelectric; vacancy; phonon scattering; Bi2Te3
Abstract In this study, we report the influence of Te vacancy formation on the thermoelectric properties of n-type Cu0.008Bi2Te2.7Se0.3 alloys, including their electronic and thermal transport properties. Te-deficient Cu0.008Bi2Te2.7-xSe0.3 (x = 0, 0.005, 0.01 and 0.02) samples were systematically synthesized and characterized. Regarding electronic transport properties, carrier concentration was increased with Te vacancies, while carrier mobility was maintained. As a result, the electrical conductivity significantly increased while the Seebeck coefficient reduced moderately, thus, the power factor was enhanced from 3.04 mW/mK2 (pristine) to 3.22 mW/mK2 (x = 0.02) at 300 K. Further analysis based on a single parabolic band model revealed that the weighted mobility of the conduction band increased, which is favorable for electron transport, as Te vacancies were generated. Regarding thermal transport properties, lattice thermal conductivity decreased with Te vacancies due to additional point defect phonon scattering, however, total thermal conductivity increased due to larger electronic contribution as Te vacancies increased. Analysis using the Debye-Callaway model suggests that the phonon scattering by the Te vacancies is as efficient as the substitution point defect scattering. Consequently, the thermoelectric figure of merit zT increased at all temperatures for x = 0.005 and 0.01. The maximum zT of 0.95 was achieved for Te-deficient Cu0.008Bi2Te2.69Se0.3 (x = 0.01) at 400 K.