The Journal of
the Korean Journal of Metals and Materials

The Journal of
the Korean Journal of Metals and Materials

Monthly
  • pISSN : 1738-8228
  • eISSN : 2288-8241

Editorial Office

Title Utilizing Dip-Coating to Fabricate Gate Dielectric and Semiconductor for Thin-Film Transistors
Authors 김용완(Yongwan Kim); 하영근(Young-geun Ha)
DOI https://doi.org/10.3365/KJMM.2023.61.8.581
Page pp.581-588
ISSN 1738-8228(ISSN), 2288-8241(eISSN)
Keywords dip-coating; gate dielectric; semiconductor; solution-process; thin-film transistor; low-voltage operation
Abstract The potential applications of advanced electronic materials in large-area, printable, and flexible electronics have generated significant interest. However, creating high-performance, low-voltage thin-film transistors (TFTs) for these applications remains difficult due to a lack of advanced gate dielectric and semiconductor materials that meet both ease-of-fabrication requirements and high electrical performance. In this study, we present high-performance gate dielectric thin-films, which were fabricated using a facile solution-based technique, and then employed to realize low operating voltage organic and metal oxide semiconductor-based thin-film transistors. The high-k oxide gate dielectrics were produced via a simple dipcoating method, resulting in the formation of thin-oxide layers. These novel oxide gate dielectrics demonstrated exceptional dielectric properties, with large capacitances (up to 430 nF/ cm2), low-level leakage current densities (< 3 × 10-8A/cm2 at 4 V), featureless morphology (rms roughness < 0.36 nm), and high transparency ( > 85%). Consequently, these dip-coated gate dielectrics can be incorporated into thin-film transistors, utilizing pentacene as p-type organic semiconductors. Furthermore, by employing dip-coating, indium oxide and indium-gallium-zinc oxide can be utilized as n-type inorganic semiconductors, allowing for the fabrication of low-voltage operation and high-performance inorganic TFTs. The resulting TFTs functioned at ultralow voltages (< ± 2 V) and achieved high transistor performance (hole mobility: 0.28 cm2V-1·s-1, electron mobility: ~2.0 cm2V-1·s-1 and on/off current ratio >105).(Received 13 March, 2023; Accepted 2 May, 2023)