The Journal of
the Korean Journal of Metals and Materials

The Journal of
the Korean Journal of Metals and Materials

Monthly
  • pISSN : 1738-8228
  • eISSN : 2288-8241

Editorial Office


  1. ์กฐ์„ ๋Œ€ํ•™๊ต ์ฒจ๋‹จ์†Œ์žฌ๊ณตํ•™๊ณผ (Department of Advanced Materials Engineering, Chosun University, Gwangju 61452, Republic of Korea)



machine learning, convolutional neural network, image recognition, microstructure, grain size

1. ์„œ ๋ก 

์žฌ๋ฃŒ์˜ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋Š” ์žฌ๋ฃŒ์˜ ๊ฐ•๋„์™€ ๊ฒฝ๋„, ์—ฐ์‹ ์œจ, ํ”ผ๋กœ ๋“ฑ ์ œํ’ˆ์˜ ๊ธฐ๊ณ„์  ํŠน์„ฑ์—๋„ ํฐ ์—ฐ๊ด€ ๊ด€๊ณ„๊ฐ€ ์žˆ๋‹ค[1-3]. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์žฌ๋ฃŒ์˜ ๋ฏธ์„ธ์กฐ์ง์„ ๊ด€์ฐฐํ•  ๋•Œ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์˜ ์ธก์ •์€ ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๋Š” ์žฌ๋ฃŒ์˜ ํŠน์„ฑ ์ค‘์˜ ํ•˜๋‚˜์ด๋‹ค. 3์ฐจ์›์˜ ๊ฒฐ์ •๋ฆฝ์œผ๋กœ๋ถ€ํ„ฐ ์ง์ ‘์ ์ธ ๊ฒฐ์ •๋ฆฝ์„ ์ธก์ •ํ•˜๊ธฐ๋Š” ์–ด๋ ค์šฐ๋ฏ€๋กœ, 2์ฐจ์› ๋‹จ๋ฉด ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ๋ถ„์„ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋•Œ ๊ฐ€์žฅ ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์„ ํ˜•๊ต์ฐจ๋ฒ•(linear intercept method)์œผ๋กœ, ์ž„์˜์˜ ์ง์„ ์„ ์ž‘๋„ํ•œ ํ›„ ์ง์„ ์˜ ๊ธธ์ด๋ฅผ ์ง์„ ๊ณผ ๊ต์ฐจํ•˜๋Š” ๊ฒฐ์ •๋ฆฝ์˜ ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆ„์–ด ์ฃผ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค[4]. ์ด ๋ฐฉ๋ฒ•์€ ๋‹จ์ˆœํ•˜๊ธด ํ•˜์ง€๋งŒ, ๊ด€์ฐฐ์ž์˜ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋…ธ๋ ฅ์„ ์š”๊ตฌํ•˜๋ฉฐ ์‚ฌ์šฉ์ž์˜ ์ฃผ๊ด€์ด ๊ฐœ์ž…๋  ์—ฌ์ง€๊ฐ€ ์žˆ๋‹ค. ์ปดํ“จํ„ฐ๊ฐ€ ์ƒ์šฉํ™”๋œ ์ดํ›„์—๋Š” ๊ทธ๋ž˜ํ”ฝ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ํ†ตํ•˜์—ฌ ๋ณด๋‹ค ์†์‰ฝ๊ฒŒ ๊ฒฐ์ •๋ฆฝ์˜ ํฌ๊ธฐ๋ฅผ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ์‚ฌ์šฉ์ž์˜ ์ฃผ๊ด€์„ ์™„์ „ํžˆ ๋ฐฐ์ œํ•  ์ˆ˜๋Š” ์—†๋‹ค. ํ•œํŽธ, ์ด๋ฏธ์ง€์ƒ์—์„œ ๋‚˜ํƒ€๋‚œ ๊ฒฐ์ •๋ฆฝ ๊ฐœ์ˆ˜๋ฅผ ์ธก์ •ํ•œ ํ›„ ์ „์ฒด ์ด๋ฏธ์ง€ ๋ฉด์ ์„ ๊ฒฐ์ •๋ฆฝ ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆ„๋ฉด ์ •ํ™•ํ•œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์‚ฐ์ถœํ•  ์ˆ˜ ์žˆ๋‹ค.

์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•œ ์ •์„ฑ์ ์ธ ๋ฏธ์„ธ์กฐ์ง ๋ถ„์„์˜ ์ž๋™ํ™”๋Š” ์ตœ๊ทผ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ๊ธฐ๊ณ„ํ•™์Šต์„ ์ด์šฉํ•˜๋ฉด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๋ฉฐ ์ด์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค[5-7]. ๊ธฐ๊ณ„ํ•™์Šต์„ ์ด์šฉํ•˜์—ฌ ํ•ฉ๊ธˆ์„ฑ๋ถ„[8]์ด๋‚˜, ์žฌ๋ฃŒ์˜ ํŠน์„ฑ[9], ๋ฏธ์„ธ์กฐ์ง์˜ ํŠน์ง•[10-12] ๋“ฑ์„ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€์™€ ์—ฐ๊ด€์ง€์–ด ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•œ ์ •๋Ÿ‰์ ์ธ ๋ฏธ์„ธ์กฐ์ง ๋ถ„์„๋„ ์‹œ๋„๋˜์—ˆ๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์— ๊ธฐ๋ฐ˜ํ•œ ํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง์„ ์ด์šฉํ•˜์—ฌ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์ธก์ •ํ•˜๊ฑฐ๋‚˜[13,14], ๋””์ง€ํ„ธ ์ด๋ฏธ์ง€ ๊ณผ์ •์„ ๊ฑฐ์ณ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ๊ฒ€์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์ธก์ •ํ•˜๋Š” ์—ฐ๊ตฌ[15,16]๊ฐ€ ์ด๋ฃจ์–ด์กŒ๋‹ค. ํŠนํžˆ ๋ณธ ์—ฐ๊ตฌ์ง„์˜ ์ด์ „ ์—ฐ๊ตฌ[17]์—์„œ๋Š” ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์— ๋Œ€ํ•œ ํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง(Convolutional Neural Network, CNN)์„ ๊ตฌ์ถ•ํ•˜๊ณ , ์ƒ์žฅ๋ชจ๋ธ(phase-field model)๋กœ ์ƒ์„ฑ๋œ ๊ฒฐ์ •๋ฆฝ ์กฐ์ง ์ด๋ฏธ์ง€๋ฅผ ํ›ˆ๋ จํ•˜์—ฌ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์ž๋™์œผ๋กœ ์ธก์ •ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋•Œ, ์ธ๊ณต์‹ ๊ฒฝ๋ง์˜ ํ›ˆ๋ จ์€, ๊ด‘ํ•™ ํ˜„๋ฏธ๊ฒฝ ์กฐ์ง๊ณผ ๊ฐ™์ด ๊ฒฐ์ •๋ฆฝ ๊ธฐ์ง€์™€ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ๊ฐ๊ฐ ๋ฐฑ์ƒ‰๊ณผ ํ‘์ƒ‰์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ์ข…๋ฅ˜์˜ ์ด๋ฏธ์ง€(Grain Boundary, GBํ˜•)์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜์˜ ์ด๋ฏธ์ง€์—์„œ์˜ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋Š” ์ ์ ˆํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜์˜€์œผ๋‚˜, EBSD(electron back scatter diffraction) ์ด๋ฏธ์ง€์™€ ๊ฐ™์ด ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ๊ตฌ์ฒด์ ์œผ๋กœ ์ •์˜๋˜์–ด ์žˆ์ง€ ์•Š๊ณ  ๊ฒฐ์ •๋ฆฝ์˜ ์ƒ‰์ƒ ๊ฒฝ๊ณ„๋กœ ํ‘œ์‹œ๋˜๋Š” ์ƒ‰์ƒํ˜• ์ด๋ฏธ์ง€(CoLored, CLํ˜•)์—์„œ๋Š” ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์—†์—ˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์ „์—ฐ๊ตฌ์™€ ์œ ์‚ฌํ•œ ๊ฐ„๋‹จํ•œ CNN์„ ๊ตฌ์ถ•ํ•˜๊ณ , ๊ธฐ๊ณ„ํ•™์Šต์„ ํ†ตํ•˜์—ฌ ๊ฒฐ์ •๋ฆฝ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” CLํ˜• ์ด๋ฏธ์ง€์—์„œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์‚ฐ์ถœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด์— GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ๊ณผ๋Š” ์–ด๋– ํ•œ ์ฐจ์ด์ ์ด ์žˆ๋Š”์ง€, ์กฐ๊ธˆ ๋” ๊ด‘๋ฒ”์œ„ํ•œ ์ข…๋ฅ˜์˜ ์ด๋ฏธ์ง€ ๋ถ„์„์˜ ๊ฐ€๋Šฅ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ๋Š” ์ƒ์žฅ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์ƒ์„ฑํ•œ ๊ฒฐ์ •๋ฆฝ ๊ตฌ์กฐ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ธํ„ฐ๋„ท์—์„œ ์ˆ˜์ง‘ํ•œ ์‹ค์ œ ์‹คํ—˜์—์„œ ์–ป์–ด์ง„ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋กœ ๊ฒ€์ฆ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€(mid-layer image)๋ฅผ ์ถ”์ถœํ•˜์—ฌ CNN์ด ์–ด๋– ํ•œ ๋ฐฉ์‹์œผ๋กœ ๋ฏธ์„ธ์กฐ์ง์˜ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์˜ˆ์ธกํ•˜๋Š”์ง€ ๊ณ ์ฐฐํ•˜์˜€๋‹ค.

2. ์‹คํ—˜ ๋ฐฉ๋ฒ•

2.1 ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€

๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋Š” 2์ฐจ์› ์ •์ƒ ๊ฒฐ์ •๋ฆฝ ์„ฑ์žฅ์— ๋Œ€ํ•œ ์ƒ์žฅ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์ƒ์žฅ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์„ค๋ช…์€ ๋ณธ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„์—์„œ ๋ฒ—์–ด๋‚˜๋ฏ€๋กœ, ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์ฐธ๊ณ ๋ฌธํ—Œ์„ ์ฐธ์กฐํ•œ๋‹ค[18,19]. ๊ฐ ์ด๋ฏธ์ง€๋Š” 512ร—512 ํ”ฝ์…€ ํฌ๊ธฐ์™€ RGB ์ƒ‰์ƒ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋‘ ์ข…๋ฅ˜์˜ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜์˜€๋Š”๋ฐ, ์ด๋Š” ๊ทธ๋ฆผ 1(a), (b)์— ๋‚˜ํƒ€๋‚ธ ๋ฐ”์™€ ๊ฐ™์ด EBSD ์ด๋ฏธ์ง€์™€ ์œ ์‚ฌํ•˜๊ฒŒ ๋šœ๋ ทํ•œ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ์„ ๋ถ„์œผ๋กœ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š๊ณ  ๊ฒฐ์ •๋ฆฝ๋งˆ๋‹ค ๋‹ค๋ฅธ ์ƒ‰์ƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ธ CLํ˜•๊ณผ, ๊ด‘ํ•™ ํ˜„๋ฏธ๊ฒฝ ์กฐ์ง๊ณผ ๊ฐ™์ด ๊ฒฐ์ •๋ฆฝ ๊ธฐ์ง€์™€ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ๋ฐฑ์ƒ‰๊ณผ ํ‘์ƒ‰์œผ๋กœ ๊ฐ๊ฐ ๋‚˜ํƒ€๋‚ธ GBํ˜•์ด๋‹ค. ์ „์‚ฐ ๋ชจ์‚ฌ๋กœ ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€์ด๋ฏ€๋กœ ์ถ•์ฒ™ํ‘œ์‹œ๋Š” ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ํ•œํŽธ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์—๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€๊ฐ€ ์žˆ์œผ๋‚˜, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 512ร—512 ํ”ฝ์…€ ์ด๋ฏธ์ง€ ์ค‘ ๊ฒฐ์ •๋ฆฝ ํ•œ ๊ฐœ ์˜์—ญ์ด ์ฐจ์ง€ํ•˜๋Š” ํ”ฝ์…€ ์ˆ˜๋กœ์จ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ด๋ฏธ์ง€ ๊ฒฝ๊ณ„์—์„œ ์ ˆ๋‹จ๋œ ๊ฒฐ์ •๋ฆฝ์˜ ๊ฒฝ์šฐ์—๋Š” ๊ฒฐ์ •๋ฆฝ ํ•œ ๊ฐœ๋กœ ์ฒ˜๋ฆฌํ•˜์˜€๋‹ค.

ํ›ˆ๋ จ๊ณผ ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋Š” CLํ˜•์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ์ˆ˜๋Ÿ‰์€ ํ•ฉ๊ณ„ 4,000์žฅ์ด์—ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ์…‹์˜ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ ๋ฒ”์œ„๊ฐ€ ๋Œ€๋žต 1,200~2,400 ํ”ฝ์…€์ด์—ˆ๋‹ค. ๊ฒฐ์ •๋ฆฝ ๊ฐœ์ˆ˜๋กœ ํ™˜์‚ฐํ•˜๋ฉด 110~220๊ฐœ ๋ฒ”์œ„๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ „์‚ฐ๋ชจ์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ์ƒˆ๋กœ์šด ๊ฒฐ์ •๋ฆฝ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ๋ฏธ์„ธ์กฐ์ง์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ ์–ด๋ ต์ง€ ์•Š์œผ๋ฏ€๋กœ, ๋ณ„๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์ฆ์‹ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์ง€๋Š” ์•Š์•˜๋‹ค. ์ •์ƒ ๊ฒฐ์ •๋ฆฝ ์„ฑ์žฅ ์ค‘ ๊ฒฐ์ •๋ฆฝ ๋ฉด์ ์€ ์‹œ๊ฐ„์— ๋Œ€ํ•˜์—ฌ ์„ ํ˜•์œผ๋กœ ๋น„๋ก€ํ•œ๋‹ค[20]. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ์ด์šฉํ•˜์—ฌ ์ „์‚ฐ๋ชจ์‚ฌ ์ค‘ ์ผ์ •ํ•œ ์‹œ๊ฐ„ ๊ฐ„๊ฒฉ์— ๋”ฐ๋ผ ์›ํ•˜๋Š” ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ ํ•™์Šต๋ฒ”์œ„ ๋‚ด์—์„œ ๊ณ ๋ฅด๊ฒŒ ๋ถ„ํฌ๋˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ํ•™์Šต ํ›„ ์ถ”๊ฐ€์ ์ธ ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ๋Š” CLํ˜•๊ณผ GBํ˜• ๋ชจ๋‘ ์ด๋ฏธ์ง€ 300๊ฐœ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋“ค์€ ์•ž์„œ ์„ค๋ช…ํ•œ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—๋Š” ํฌํ•จ๋˜์ง€ ์•Š๋Š”๋‹ค.

์œ„์—์„œ ํ›ˆ๋ จ๋œ ์‹ ๊ฒฝ๋ง์ด ์‹ค์ œ ๋ฏธ์„ธ์กฐ์ง์—๋„ ์ž˜ ์ ์šฉ๋˜๋Š” ์ง€ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ, ๊ทธ๋ฆผ 1(c), (d)์™€ ๊ฐ™์ด ์‹คํ—˜์ ์œผ๋กœ ์–ป์–ด์ง„ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ถ•์ฒ™ํ‘œ์‹œ๋ฅผ ์ œ์™ธํ•œ ์ƒํƒœ์—์„œ, ์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 512ร—512 ํ”ฝ์…€ ์ด์ƒ์ด๋ฉด ๋ถ€๋ถ„์ ์ธ 512ร—512 ํ”ฝ์…€์˜ ์ •์‚ฌ๊ฐํ˜• ์ด๋ฏธ์ง€๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. 512ร—512 ํ”ฝ์…€ ์ดํ•˜ ์ด๋ฏธ์ง€๋Š” ๊ฐ€๋Šฅํ•œ ํ•œ ํฐ ํฌ๊ธฐ์˜ ์ •์‚ฌ๊ฐํ˜•์œผ๋กœ ์ถ”์ถœํ•œ ๋‹ค์Œ, 512ร—512 ํ”ฝ์…€ ํฌ๊ธฐ๋กœ ํ™•๋Œ€ํ•˜์˜€๋‹ค. CLํ˜• ์ด๋ฏธ์ง€๋Š” ๋ชจ๋‘ EBSD ์ด๋ฏธ์ง€๋กœ, GBํ˜• ์ด๋ฏธ์ง€๋Š” ๊ด‘ํ•™ ํ˜„๋ฏธ๊ฒฝ์œผ๋กœ ์ดฌ์˜๋œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๊ฐ ์ด๋ฏธ์ง€์—์„œ ์ „์ฒด ์ด๋ฏธ์ง€ ํฌ๊ธฐ(512ร—512 ํ”ฝ์…€)๋ฅผ ๊ฒฐ์ •๋ฆฝ ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆ„์–ด ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์ถ”์ •ํ•˜์˜€๋‹ค.

2.2 ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง

CNN [21]์€ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•์ด๋ฉฐ, ๊ธฐ์กด ์ธ๊ณต์‹ ๊ฒฝ๋ง[22]๊ณผ ์œ ์‚ฌํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ CNN ๊ตฌ์กฐ๋Š” ๊ทธ๋ฆผ 2์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. CNN์˜ ์ „์ฒด ๊ตฌ์กฐ๋Š” ์ž…๋ ฅ์ธต(input layer)๊ณผ ์€๋‹‰์ธต(hidden layer), ์ถœ๋ ฅ์ธต(output layer)์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ฒฐ์ •๋ฆฝ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ํšŒ๊ท€ํ•˜๋Š” ๊ฒƒ์ด๋ฏ€๋กœ, ์ž…๋ ฅ์ธต์€ ๋ณ€์ˆ˜๋กœ์„œ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋ฅผ ๋Œ€์ž…ํ•œ๋‹ค. ์ดˆ๊ธฐ ์ž…๋ ฅ ์ด๋ฏธ์ง€๋Š” 512ร—512ร—3์˜ RGB ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€์ด๋ฉฐ, ์ปดํ“จํ„ฐ ์ž์› ์‚ฌ์šฉ์„ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ์ด๋ฏธ์ง€ ์ž…๋ ฅ ์งํ›„ 256ร—256ร—3์˜ ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€๋กœ ์ถ•์†Œํ•˜์˜€๋‹ค. ์ถœ๋ ฅ์ธต์—์„œ๋Š” ํšŒ๊ท€ ๊ฒฐ๊ณผ๋กœ์„œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค.

์€๋‹‰์ธต์€ ํ•ฉ์„ฑ๊ณฑ(convolution)๊ณผ ํ™œ์„ฑํ™” ํ•จ์ˆ˜(activation function), ํ’€๋ง(pooling) ์—ฐ์‚ฐ์„ ํ•ฉ์นœ Conv ๊ณ„์ธต๊ณผ ์™„์ „๊ฒฐํ•ฉ๊ณ„์ธต(fully-connected layer, FC)๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋‹ค. Conv ๊ณ„์ธต ๋‚ด ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต์€ ๋‹ค์ˆ˜์˜ ์ฑ„๋„(channel)์„ ๊ฐ€์ง€๋ฉฐ ๊ฐ ์ฑ„๋„์—๋Š” ์ด๋ฏธ์ง€ ์ •๋ณด๊ฐ€ ์ €์žฅ๋˜๊ณ , ์ด์ „ ์ธต์—์„œ ํ˜„์žฌ ์ธต์€ ์ž‘์€ ํฌ๊ธฐ ์ด๋ฏธ์ง€์ธ ํ•„ํ„ฐ(filter)์™€์˜ ํ•ฉ์„ฑ๊ณฑ์„ ํ†ตํ•˜์—ฌ ์—ฐ๊ฒฐ๋œ๋‹ค. ์ด ํ•„ํ„ฐ ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ๋Š” CNN ํ›ˆ๋ จ ๊ณผ์ • ์ค‘ ํ™•์ •๋œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์ค‘์— ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋Š” ๋ณ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ ์ผ๋ฐ˜์ ์œผ๋กœ๋Š” ์ด๋ฏธ์ง€๋ฅผ ์ถ•์†Œํ•œ๋‹ค. ์ด๋ฏธ์ง€์˜ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์— ์˜ํ•œ ์ถ•์†Œ ์ •๋„๋ฅผ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํŒจ๋”ฉ(padding)๊ณผ ์ŠคํŠธ๋ผ์ด๋“œ(stride)๋ฅผ ์ ์šฉํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ๋งˆ์นœ ๋ฐ์ดํ„ฐ๋Š” ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ๊ฑฐ์ณ ์ถ”๊ฐ€๋กœ ์ด๋ฏธ์ง€๋ฅผ ์ถ•์†Œํ•˜๋Š” ํ’€๋ง ์—ฐ์‚ฐ์œผ๋กœ ์—ฐ๊ฒฐ๋œ๋‹ค. ๊ฐ ์—ฐ์‚ฐ์— ๊ด€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์ฐธ๊ณ ๋ฌธํ—Œ์„ ์ฐธ์กฐํ•œ๋‹ค[6,23]. ๊ทธ๋ฆผ 2์—์„œ ๋‚˜ํƒ€๋‚ธ ๋ฐ”์™€ ๊ฐ™์ด ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•œ CNN์—์„œ๋Š” Conv ๊ณ„์ธต์ด 4๊ฐœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋‹ค. Conv4๋ฅผ ํ†ต๊ณผํ•œ ํ›„ ์ด๋ฏธ์ง€๊ฐ€ ์ ๋‹นํžˆ ์ž‘์•„์ง€๋ฉด, ํ‰ํƒ„ํ™”(flatten)๋ฅผ ๊ฑฐ์ณ ์ผ๋ฐ˜ ์ธ๊ณต์‹ ๊ฒฝ๋ง์ธ FC ๊ณ„์ธต์„ ๊ฑฐ์ณ ์ตœ์ข… ์ถœ๋ ฅ์ธต์œผ๋กœ ์—ฐ๊ฒฐ๋œ๋‹ค. ํ‰ํƒ„ํ™”๋œ ๊ณ„์ธต๊ณผ FC ๊ณ„์ธต ์‚ฌ์ด์—๋Š” ๊ณผ์ ํ•ฉ(overfitting)์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๋“œ๋กญ์•„์›ƒ(dropout)์„ 50 % ์ ์šฉํ•˜์˜€๋‹ค.

ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋Š” Conv ๊ณ„์ธต๊ณผ FC ๊ณ„์ธต์—์„œ ReLU(Rectified Linear Unit) ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ตœ์ข…์ ์œผ๋กœ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์‚ฐ์ถœํ•˜๋Š” ์ถœ๋ ฅ์ธต์—์„œ๋Š” ๋ณ„๋‹ค๋ฅธ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ์€๋‹‰์ธต์˜ ์ธต์ˆ˜์™€ ์ฑ„๋„ ์ˆ˜ ๋ฐ ๋…ธ๋“œ(node) ์ˆ˜ ๋“ฑ์€ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋„๋ก ์‹œํ–‰์ฐฉ์˜ค๋ฅผ ๊ฑฐ์ณ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์—์„œ ์‚ฌ์šฉํ•œ ์—ฐ์‚ฐ์— ๊ด€ํ•œ ์กฐ๊ฑด์€ ํ‘œ 1์— ์ •๋ฆฌํ•˜์˜€๋‹ค. ํ•™์Šต์€ ์—ํฌํฌ(epoch) ๋‹จ์œ„๋กœ ์ง„ํ–‰๋˜๋Š”๋ฐ, 1 ์—ํฌํฌ๋Š” ์ค€๋น„๋œ ์ž…๋ ฅ๋ฐ์ดํ„ฐ ์ „์ฒด๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜์—ฌ ํ•œ ๋ฒˆ ํ›ˆ๋ จ๋œ ์ƒํƒœ๋ฅผ ๋œปํ•œ๋‹ค. ์†์‹ค(loss)๋กœ์„œ๋Š” ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ(mean squared error)๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” Adam [24]์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ์„ค๋ช…ํ•œ CNN์€ ํŒŒ์ด์ฌ (python) [25] ๊ณผ ์ผ€๋ผ์Šค(keras) [26]๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตฌํ˜„ํ•˜์˜€๋‹ค.

3. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ

3.1 ๊ธฐ๊ณ„ํ•™์Šต์˜ ์ •ํ™•๋„

์ƒ์žฅ๋ชจ๋ธ๋กœ ์ƒ์„ฑํ•œ CLํ˜• ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€ 4,000์žฅ ์ค‘ ๋ฌด์ž‘์œ„๋กœ ์ถ”์ถœํ•œ 75 %์˜ ์ด๋ฏธ์ง€ 3,000์žฅ์„ CNN ํ›ˆ๋ จ์šฉ์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋‚˜๋จธ์ง€ 25 %์˜ ์ด๋ฏธ์ง€ 1,000์žฅ์„ ๊ฒ€์ฆ์šฉ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. 60,000 ์—ํฌํฌ๋ฅผ ํ›ˆ๋ จํ•˜๋Š” ๊ณผ์ • ๋™์•ˆ ์†์‹ค ๋ณ€ํ™”๋ฅผ ๊ทธ๋ฆผ 3์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ํŒŒ๋ž€์ƒ‰๊ณผ ๋นจ๊ฐ„์ƒ‰ ์„ ์€ ๊ฐ๊ฐ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์™€ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ํ‘œ์‹œํ•œ๋‹ค. ํ‰๊ท  ์ œ๊ณฑ ์†์‹ค๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ์†์‹ค์ด ์ž‘์„์ˆ˜๋ก ํ•™์Šต์ด ์ž˜ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆผ์—์„œ ๋ณด๋Š” ๋ฐ”์™€ ๊ฐ™์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์†์‹ค์€ ํ›ˆ๋ จ ์ดˆ๊ธฐ์— ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๊ฐ์†Œํ•˜๊ณ , ๊ทธ ๊ฐ์†Œํ•˜๋Š” ๊ธฐ์šธ๊ธฐ๊ฐ€ ํ•™์Šต ํšŸ์ˆ˜๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ž‘์•„์ ธ ๋Œ€๋žต 600 ํ”ฝ์…€ ์ •๋„์— ์ ‘๊ทผํ•˜์˜€๋‹ค. ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ์†์‹ค์€ ํฐ ์ง„ํญ์„ ๋ณด์ด๋ฉฐ ๊ฐ์†Œํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ „์ฒด์ ์ธ ๊ฒฝํ–ฅ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์™€ ์œ ์‚ฌํ•˜์˜€์œผ๋ฉฐ, 50,000 ์—ํฌํฌ์—์„œ 4,000 ํ”ฝ์…€ ์ •๋„์˜ ์ตœ์†Ÿ๊ฐ’์„ ๋ณด์ธ ํ›„, ์ดํ›„์—์„œ ์†์‹ค์ด ๋‹ค์‹œ ์ ์ฐจ ์ฆ๊ฐ€ํ•˜๋Š” ๊ณผ์ ํ•ฉ ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ CNN ํ•™์Šต์€ 50,000 ์—ํฌํฌ๊นŒ์ง€ ํ›ˆ๋ จํ•˜์˜€๋‹ค.

ํ›ˆ๋ จ ๋ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•œ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆผ 4(a), (b)์— ๊ฐ๊ฐ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. X์ถ•์€ ๋ฐ์ดํ„ฐ์˜ ์‹ค์ œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ(Ameasured)์ด๋ฉฐ, ์ด๋Š” ๊ฒฐ์ •๋ฆฝ ๊ตฌ์กฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์ „์‚ฐ๋ชจ์‚ฌ ๊ณ„์‚ฐ ๋™์•ˆ ์ž๋™์œผ๋กœ ์ธก์ •ํ•œ ๊ฒƒ์ด๋‹ค. Y์ถ•์€ CNN์œผ๋กœ๋ถ€ํ„ฐ ์˜ˆ์ธก๋œ ๊ฒฐ๊ณผ(Apredicted)์ด๋‹ค. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ 3,000๊ฐœ์˜ ๊ฒฝ์šฐ, ๊ธฐ์šธ๊ธฐ๋Š” 0.991์ด๋ฉฐ R2๋Š” 0.999๋กœ ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€์˜ ๊ด€๊ณ„๊ฐ€ ๊ฑฐ์˜ ์™„๋ฒฝํ•˜๊ฒŒ ์ผ์น˜ํ•˜์˜€๋‹ค. ํ•œํŽธ, ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ 1,000๊ฐœ์˜ ๊ฒฝ์šฐ, ๊ธฐ์šธ๊ธฐ๋Š” 0.902 ์ •๋„์ด๊ณ  R2๋Š” 0.934 ์ •๋„๋กœ ์ ๋‹นํ•œ ์ผ์น˜๋ฅผ ๋ณด์ด๊ธด ํ–ˆ์œผ๋‚˜, ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ์ •ํ™•๋„์™€ ๋น„๊ตํ•˜๋ฉด ์ƒ๋‹นํ•œ ํŽธ์ฐจ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. CNN์œผ๋กœ ์˜ˆ์ธก๋œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์™€ ์‹ค์ œ๋กœ ์ธก์ •ํ•œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์˜ ๋น„์œจ์„ ์ •ํ™•๋„(Apredicted/Ameasured)๋ฅผ ๋‚˜ํƒ€๋‚œ ๊ทธ๋ž˜ํ”„๋Š” ๊ทธ๋ฆผ 4(c), (d)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ์—๋Š” ๋ชจ๋“  ๋ฐ์ดํ„ฐ์—์„œ 1์— ๊ทผ์ ‘ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์–ด ์ •ํ™•ํ•œ ์˜ˆ์ธก์ด ๋œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ์—๋Š” ํ‰๊ท ์ ์œผ๋กœ 1์— ๊ฐ€๊นŒ์šด ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธด ํ•˜์ง€๋งŒ, ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ ์ž‘์„์ˆ˜๋ก ํŽธ์ฐจ๊ฐ€ ์‹ฌํ•˜๊ณ , ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ ์ €ํ‰๊ฐ€๋˜๋Š” ํ˜„์ƒ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค.

3.2 CNN์˜ ์ถ”๊ฐ€ ๊ฒ€์ฆ

ํ›ˆ๋ จ ๋ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ์ด์™ธ์— ์ถ”๊ฐ€์ ์ธ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋ฅผ ์ด์šฉํ•˜์—ฌ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ตฌ์ถ•ํ•œ CNN์— ๋Œ€ํ•˜์—ฌ ์ถ”๊ฐ€๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. CNN์˜ ํ›ˆ๋ จ๊ณผ ๊ฒ€์ฆ์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ๋Š” ์ƒ์ˆ ํ•œ ๋ฐ”์™€ ๊ฐ™์ด ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ 1,200~2,400 ํ”ฝ์…€์˜ ๋ฒ”์œ„๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ถ”๊ฐ€ ๊ฒ€์ฆ์„ ์œ„ํ•ด์„œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์˜ ๋ฒ”์œ„๊ฐ€ 50~3,200 ํ”ฝ์…€์˜ ๋ฒ”์œ„๋ฅผ ๊ฐ–๋Š” CLํ˜•๊ณผ GBํ˜•์˜ ์ด๋ฏธ์ง€๋ฅผ ์ค€๋น„ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์˜ ๋ฒ”์œ„๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚˜๋Š” ๊ฒƒ์ด๋ฉฐ, ํ›ˆ๋ จ ๋ฒ”์œ„ ๋ฐ”๊นฅ์—์„œ์˜ ๊ธฐ๊ณ„ํ•™์Šต ์ •ํ™•๋„๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ CNN ํ•™์Šต์„ ์œ„ํ•ด์„œ CLํ˜•๋งŒ์„ ์‚ฌ์šฉํ•˜์˜€๋Š”๋ฐ, ์ด ์ธ๊ณต์‹ ๊ฒฝ๋ง์ด ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ๊ฐ•์กฐ๋œ GBํ˜•์„ ์ ์ ˆํ•˜๊ฒŒ ์ธ์‹ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜๊ณ ์ž ํ–ˆ๋‹ค.

์ถ”๊ฐ€ ๊ฒ€์ฆ์šฉ ๋ฐ์ดํ„ฐ๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋ฅผ CLํ˜•์— ๋Œ€ํ•˜์—ฌ ๊ทธ๋ฆผ 5(a)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ํ•™์Šต๋ฒ”์œ„์ธ ์•ฝ 1,200~2,400 ํ”ฝ์…€์—์„œ๋Š” ํ›ˆ๋ จ ๋ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์™€ ๊ฐ™์€ ์ˆ˜์ค€์˜ ๋†’์€ ์ •ํ™•๋„๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ์ด์ „ ์ ˆ์˜ ํ›ˆ๋ จ๊ณผ ๊ฒ€์ฆ์ด ์ ์ ˆํ•˜๊ฒŒ ์ˆ˜ํ–‰๋˜์–ด ์žˆ์Œ์„ ์žฌ์ฐจ ์ฆ๋ช…ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํ•™์Šต๋ฒ”์œ„๋ณด๋‹ค ๋‚ฎ์€ ๋ฒ”์œ„, ์ฆ‰ ๋Œ€๋žต 400~1,200 ํ”ฝ์…€์˜ ๊ฒฝ์šฐ์—๋Š” ์—ญ์‹œ ์‹ค์ œ ๋ฐ์ดํ„ฐ์™€์˜ ์ผ์น˜์œจ์ด ๋†’์•˜๋‹ค. 400 ํ”ฝ์…€ ์ดํ•˜์—์„œ๋Š” ์ •ํ™•ํ•œ ๊ฐ’์—์„œ ๋งŽ์ด ๋ฒ—์–ด๋‚˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ด๋Š” ์ž‘์€ ๊ฒฐ์ •๋ฆฝ๋“ค์ด ํ•ฉ์„ฑ๊ณฑ๊ณผ ํ’€๋ง์„ ํ†ตํ•œ ์ถ•์†Œ ๊ณผ์ •์—์„œ ํ•ด์ƒ๋„์˜ ํ•œ๊ณ„๋กœ ์ ์ ˆํ•˜๊ฒŒ ๊ฒ€์ถœ๋˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ํ•œํŽธ, ํ•™์Šต๋ฒ”์œ„ ๋ณด๋‹ค ๋†’์€ ๋ฒ”์œ„, ์ฆ‰ ๊ฒฐ์ •๋ฆฝ์˜ ๋ฉด์ ์ด 2,400 ํ”ฝ์…€๋ณด๋‹ค ํฐ ๊ฒฝ์šฐ์—๋Š” ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ ์‹ค์ œ ๊ฐ’๋ณด๋‹ค ์ €ํ‰๊ฐ€๋˜๋Š” ์˜ํ–ฅ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•™์Šต๋ฒ”์œ„ ๋‚ด์—์„œ๋„ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ ํฐ ๊ฒฝ์šฐ์— ์ด๋Ÿฐ ํ˜„์ƒ์ด ์ผ์–ด๋‚ฌ๋Š”๋ฐ, ๋”์šฑ ํฐ ๊ฒฐ์ •๋ฆฝ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์˜ค์ฐจ๊ฐ€ ๋‘๋“œ๋Ÿฌ์กŒ๋‹ค. ์ด๋•Œ์˜ ์˜ค์ฐจ๋Š” ๋ฌด๋ถ„๋ณ„ํ•˜๊ฒŒ ์‚ฐ์žฌํ•˜์—ฌ ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ํ•™์Šต๋ฒ”์œ„ ๋‚ด์˜ ๋ฐ์ดํ„ฐ ๋ณ€ํ™”์˜ ์—ฐ์žฅ์„ ์— ์žˆ๋Š” ์˜ค์ฐจ๋ผ๊ณ  ํŒ๋‹จ๋œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ •ํ™•๋„์˜ ๋ถ„ํฌ๋Š” GBํ˜• ์ด๋ฏธ์ง€๋กœ ํ•™์Šต๊ณผ ๊ฒ€์ฆ์„ ํ–ˆ๋˜ ์ด์ „ ์—ฐ๊ตฌ[17]์—์„œ๋„ ์œ ์‚ฌํ•˜๊ฒŒ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ๋‹จ, GBํ˜• ์ด๋ฏธ์ง€๋กœ ํ•™์Šตํ–ˆ์„ ๊ฒฝ์šฐ์—๋Š” ๊ฒฐ์ •๋ฆฝ์ด ๋งค์šฐ ์ž‘์„ ๋•Œ์˜ ์˜ค์ฐจ๊ฐ€ ๋ณธ ์—ฐ๊ตฌ์˜ ์˜ค์ฐจ๋ณด๋‹ค ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„ ์˜์—ญ์ด ์ด๋ฏธ์ง€์ƒ์œผ๋กœ ์ผ์ • ํญ์„ ๊ฐ€์ง„ ์˜์—ญ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š”๋ฐ, ์ž‘์€ ๊ฒฐ์ •๋ฆฝ์ด ์ด ๊ฒฐ์ •๋ฆฝ๊ณ„์— ๊ฐ€๋ ค์ ธ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์™€ ๊ฐ™์ด CLํ˜• ์ด๋ฏธ์ง€๋กœ ํ•™์Šตํ–ˆ์„ ๊ฒฝ์šฐ์—๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„ ์˜์—ญ์ด ๋ถ„๋ฆฌ๋˜์–ด ์žˆ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ์ž‘์€ ๊ฒฐ์ •๋ฆฝ์„ ๊ฐ€๋ฆฌ๋Š” ํšจ๊ณผ๊ฐ€ ์—†๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ์ž‘์€ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์—์„œ๋„ ์ƒ๋‹นํžˆ ์ž‘์€ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ–ˆ๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค.

300๊ฐœ์˜ GLํ˜• ์ด๋ฏธ์ง€๋กœ์จ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 5(b)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด ๊ฒฝ์šฐ์—๋Š” ์ „ ๊ตฌ๊ฐ„์— ๊ฑธ์ณ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์˜ ์˜ˆ์ธก์ด ์ ์ ˆํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค. ํŠนํžˆ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ 1,000 ํ”ฝ์…€ ์ด์ƒ์—์„œ๋Š” ์•ฝ 1,500 ํ”ฝ์…€ ์ •๋„์˜ ๊ฑฐ์˜ ์ผ์ •ํ•œ ์˜ˆ์ธก๊ฐ’์„ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

์ธํ„ฐ๋„ท์—์„œ ์ˆ˜์ง‘ํ•œ ์‹ค์ œ ์‹คํ—˜์—์„œ ์–ป์–ด์ง„ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋กœ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 6์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๊ทธ๋ฆผ 6(a)๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ CLํ˜• ์ด๋ฏธ์ง€๋กœ ํ•™์Šตํ•œ ํ›„ ์‹คํ—˜ ์ด๋ฏธ์ง€๋กœ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ์ด๋•Œ CLํ˜• ์‹คํ—˜ ์ด๋ฏธ์ง€๋Š” ๋น„๊ต์  ์ธก์ •๊ฐ’๊ณผ ์˜ˆ์ธก๊ฐ’์ด ์ž˜ ์ผ์น˜ํ•˜์˜€๋‹ค. GBํ˜• ์‹คํ—˜ ์ด๋ฏธ์ง€๋Š”, GBํ˜• ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ฆํ–ˆ๋˜ ๊ทธ๋ฆผ 5(b)์™€ ๊ฐ™์ด, ์ „ ์˜์—ญ์—์„œ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์•ฝ 1,500 ํ”ฝ์…€ ์ •๋„๋กœ ์ผ์ •ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๋น„๊ต๋ฅผ ์œ„ํ•˜์—ฌ GBํ˜• ์ด๋ฏธ์ง€๋กœ ํ•™์Šตํ•œ ์ด์ „ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๋ฆผ 6(b)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋•Œ ์œ„์˜ ๊ฒฐ๊ณผ์™€๋Š” ๋ฐ˜๋Œ€๋กœ GBํ˜• ์‹คํ—˜ ์ด๋ฏธ์ง€๋Š” ๋งŒ์กฑํ•  ๋งŒํ•œ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒˆ์œผ๋‚˜, CLํ˜• ์‹คํ—˜ ์ด๋ฏธ์ง€๋Š” ์ผ๋ถ€ ์˜ˆ์™ธ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ์™ธํ•˜๊ณ ๋Š” ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๊ฐ€ ์•ฝ 3,500 ํ”ฝ์…€ ์ •๋„๋กœ ์ผ์ •ํ•˜๊ฒŒ ์˜ˆ์ธก๋˜์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฒฐ๊ณผ๋กœ ๋ณผ ๋•Œ, GLํ˜• ์ด๋ฏธ์ง€์™€ GBํ˜• ์ด๋ฏธ์ง€๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ตฌ์ถ•ํ•œ CNN์œผ๋กœ์„œ๋Š” ์„œ๋กœ ๊ฐ„์— ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€์—์„œ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์ ์ ˆํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ™์€ ์ข…๋ฅ˜์˜ ์ด๋ฏธ์ง€, ์ฆ‰, CLํ˜• ์ด๋ฏธ์ง€ ํ›ˆ๋ จ โ€“ CLํ˜• ์ด๋ฏธ์ง€ ์˜ˆ์ธก, GBํ˜• ์ด๋ฏธ์ง€ ํ›ˆ๋ จ โ€“ GBํ˜• ์ด๋ฏธ์ง€ ์˜ˆ์ธก๊ณผ ๊ฐ™์€ ๋™์ข… ์ด๋ฏธ์ง€์˜ ๊ธฐ๊ณ„ํ•™์Šต์ด ํ•„์š”ํ•˜๋‹ค. ํ˜น์€ CLํ˜•๊ณผ GBํ˜•์„ ๊ฒฐํ•ฉํ•œ ๊ฑฐ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ํ•™์Šตํ•ด์•ผ ๋งŒ์กฑํ•  ๋งŒํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

3.3 ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€ ๋ถ„์„

CNN์— ์˜ํ•˜์—ฌ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ์˜ˆ์ธกํ•จ์— ์žˆ์–ด์„œ ์–ด๋–ค ์ค‘๊ฐ„ ๊ณผ์ •์„ ๊ฑฐ์น˜๋Š”์ง€ ์•Œ๊ธฐ ์œ„ํ•˜์—ฌ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€[6,12]๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์‚ฌ์šฉ์ž๊ฐ€ ๊ด€์ฐฐํ•˜๋Š” ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€๋Š” ์ค‘๊ฐ„์ธต์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ณด์—ฌ์ฃผ์ง€๋Š” ์•Š์ง€๋งŒ, ๋Œ€๋žต์ ์ธ ๋ณ€ํ™˜๊ณผ์ •์„ ์‹œ๊ฐ์ ์œผ๋กœ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋ฆผ 7(a)์˜ CLํ˜• ์ด๋ฏธ์ง€๋ฅผ ์œ„์—์„œ CLํ˜• ์ด๋ฏธ์ง€๋กœ ํ›ˆ๋ จ๋œ ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์— ์ž…๋ ฅํ•˜๊ณ  ๊ฐ Conv์ธต์„ ํ†ต๊ณผํ•  ๋•Œ๋งˆ๋‹ค ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ถœ๋ ฅํ•˜์˜€๋‹ค. ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€์—์„œ ๊ฐ ํ”ฝ์…€์˜ ์ˆ˜์น˜๋Š” ํ•ฉ์„ฑ๊ณฑ ๊ณผ์ •์—์„œ ํšŒ์ƒ‰ํ†ค ์ด๋ฏธ์ง€(0~255)์˜ ๋ฒ”์œ„๋ฅผ ๋ฒ—์–ด๋‚  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ด๋ฏธ์ง€ ํ”ฝ์…€ ์ •๋ณด๋ฅผ ์‹œ๊ฐํ™”ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ๊ฐ ํ”ฝ์…€์€ ๋ชจ๋“  ํ”ฝ์…€์˜ ํ‰๊ท ๊ฐ’๊ณผ ํ‘œ์ค€ ํŽธ์ฐจ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ‘œ์ค€ํ™”(standardization)ํ•˜์—ฌ 0~255์˜ ๊ฐ’์„ ๊ฐ–๋„๋ก ๋ฒ”์œ„๋ฅผ ์กฐ์ •ํ•˜์˜€๋‹ค.

Conv1 ์งํ›„ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€๋Š” ๊ทธ๋ฆผ 7(b)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Conv1์€ 3๊ฐœ ์ฑ„๋„(RGB)์„ ๊ฐ–๋Š” ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅ๋ฐ›๊ณ , ํ•„ํ„ฐ 32๊ฐœ๋กœ ํ•ฉ์„ฑ๊ณฑ ๊ณผ์ •์„ ๊ฑฐ์นœ ํ›„, ์ฑ„๋„ 32๊ฐœ์— ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๊ณ  ํ™œ์„ฑํ™”์™€ ์ตœ๋Œ€ ํ’€๋ง(maxpooling)์„ ๊ฑฐ์ณ, ์ด 32๊ฐœ์˜ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์—์„œ ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋Š” 256ร—256 ํ”ฝ์…€์—์„œ 128ร—128 ํ”ฝ์…€๋กœ ์ถ•์†Œ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆผ 7(b)๋Š” ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€ 32๊ฐœ ์ค‘ 4๊ฐœ๋ฅผ ๋ฐœ์ทŒํ•œ ๊ฒƒ์ด๋‹ค. ์ž…๋ ฅ ์ด๋ฏธ์ง€(๊ทธ๋ฆผ 7(a))๋Š” ์ง์ ‘์ ์œผ๋กœ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ํ‘œํ˜„ํ•˜์ง€ ์•Š๊ณ  ๊ฒฐ์ •๋ฆฝ ๊ฐ„ ์ƒ‰์ƒ์„ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. Conv1 ์งํ›„ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€์—์„œ๋Š” ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€ ์ „์ฒด์˜ ๋Œ€๋น„(contrast)์™€ ๊ฒฐ์ •๋ฆฝ๋ณ„ ๋Œ€๋น„๋ฅผ ๋ฐ”๊พธ์–ด ๋ถ€๋ถ„์ ์œผ๋กœ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ด๋•Œ ์ถ”์ถœ๋œ ๊ฒฐ์ •๋ฆฝ๊ณ„๋Š” ๋ฐ์€์ƒ‰์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

Conv2์—์„œ๋Š” ์ด ์ฑ„๋„ 32๊ฐœ๊ฐ€ ์กด์žฌํ•˜๋ฏ€๋กœ, ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€ 32๊ฐœ๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ๋‹ค. ์ด๋•Œ ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋Š” 128ร—128 ํ”ฝ์…€์—์„œ 64ร—64 ํ”ฝ์…€๋กœ ์ถ•์†Œ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆผ 7(b)์— ๋‚˜ํƒ€๋‚ธ ์ด๋ฏธ์ง€๋Š” Conv2์—์„œ ์ƒ์„ฑ๋œ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€ 32๊ฐœ ์ค‘ 8๊ฐœ๋ฅผ ๋ฐœ์ทŒํ•œ ๊ฒƒ์ด๋‹ค. Conv1์—์„œ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ์ถ”์ถœํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ Conv2์—์„œ ์‹ฌํ™”ํ•˜์˜€๋‹ค. ํ‘๋ฐฑ์œผ๋กœ ํ‘œํ˜„๋œ ๊ฒฐ์ •๋ฆฝ ์ƒ‰์ƒ์„ ๋‚˜ํƒ€๋‚ธ ์ด๋ฏธ์ง€๋Š” ์ฐพ์•„๋ณผ ์ˆ˜ ์—†์—ˆ๊ณ , ๊ฒฐ์ •๋ฆฝ์€ ํ‘์ƒ‰์œผ๋กœ, ๊ฒฐ์ •๋ฆฝ๊ณ„๋Š” ๋ฐฑ์ƒ‰์œผ๋กœ ์š”์†Œ๋ณ„๋กœ ๊ฐ•์กฐ๋œ ์ด๋ฏธ์ง€๊ฐ€ ๋šœ๋ ทํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Conv3 ์ดํ›„์—์„œ๋Š” ์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ ์ง€๋‚˜์น˜๊ฒŒ ์ž‘์•„์„œ ์œก์•ˆ์œผ๋กœ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ํ™•์ธํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์› ๋‹ค.

ํ•œํŽธ, ์ด์ „ ์—ฐ๊ตฌ[17]์—์„œ ๊ตฌ์ถ•ํ•œ GBํ˜• ํ›ˆ๋ จ CNN์œผ๋กœ CLํ˜• ์ด๋ฏธ์ง€์˜ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 7(c)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Conv1์„ ํ†ต๊ณผํ•œ ํ›„ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€์—์„œ๋Š” ์ผ๋ถ€ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ๊ฒ€์ถœํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. Conv2์„ ํ†ต๊ณผํ•œ ํ›„์—๋Š” CLํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ๊ณผ ๊ฐ™์ด ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ์š”์†Œ๋ณ„๋กœ ๊ฐ•์กฐํ•˜์ง€ ๋ชปํ•˜๊ณ , Conv1 ์งํ›„ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€์— ๋น„ํ•˜์—ฌ ๊ทธ๋‹ค์ง€ ๋ฐœ์ „๋œ ๊ฒ€์ถœ ํšจ๊ณผ๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. ์ด์— ๋”ฐ๋ผ GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์€ ๊ทธ๋ฆผ 6(b)์—์„œ์™€ ๊ฐ™์ด CLํ˜• ์ด๋ฏธ์ง€๋ฅผ ์ ์ ˆํ•˜๊ฒŒ ๋ถ„์„ํ•˜์ง€ ๋ชปํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

๊ทธ๋ฆผ 8์€ GBํ˜• ์ด๋ฏธ์ง€(๊ทธ๋ฆผ 8(a))๋ฅผ CLํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ(๊ทธ๋ฆผ 8(b))๊ณผ GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ(๊ทธ๋ฆผ 8(c))๋กœ์จ ์ƒ์„ฑํ•œ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€์ด๋‹ค. ๊ทธ๋ฆผ 8(b)์™€ ๊ฐ™์ด CLํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ๋กœ GBํ˜• ์ด๋ฏธ์ง€๋ฅผ ๋ถ„์„ํ•˜๋ฉด, Conv1 ์งํ›„์—๋Š” ์ „์ฒด์ ์ธ ์ด๋ฏธ์ง€์˜ ๋Œ€๋น„๋ฅผ ๋ณ€๊ฒฝํ•˜๋ฉฐ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ๊ฒ€์ถœํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋‚˜ํƒ€๋‚œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Conv2์—์„œ๋Š” ์ด์™€ ๊ฐ™์€ ๊ฒฐ์ •๋ฆฝ๊ณ„ ๊ฒ€์ถœ ์‹œ๋„๊ฐ€ ๋” ์ด์ƒ ๋ฐœ์ „ํ•˜์ง€ ๋ชปํ–ˆ์œผ๋ฉฐ, ์‹ฌ์ง€์–ด ์ผ๋ถ€ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€๋Š” ์ „์ฒด์ ์œผ๋กœ ํ‘์ƒ‰์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋ฆผ 8(c)์— ๋‚˜ํƒ€๋‚ธ GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์—์„œ์˜ ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€์—์„œ๋Š” Conv1์—์„œ์˜ ๊ฒฐ์ •๋ฆฝ๊ณ„ ๊ฒ€์ถœ์ด Conv2์—์„œ ๋”์šฑ ๋ฐœ๋‹ฌํ•˜์—ฌ ๊ฒฐ์ •๋ฆฝ๊ณ„ ๊ฐ๋„ ์š”์†Œ ๋ณ„๋กœ ์ ์ ˆํ•˜๊ฒŒ ๊ฒ€์ถœ๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค.

์ด์ „ ์—ฐ๊ตฌ[17]์—์„œ๋Š”, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ CNN์€ ๊ฒฐ์ •๋ฆฝ ๊ฐœ์ˆ˜๋‚˜ ๊ฒฐ์ •๋ฆฝ๊ณ„ ๋ฉด์ ๋น„๊ฐ€ ์•„๋‹Œ ๊ฒฐ์ •๋ฆฝ๊ณ„ ๊ณก๋ฅ ๋กœ์จ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด๋ผ๊ณ  ๊ฒฐ๋ก ์ง€์—ˆ๋‹ค. ๊ฒฐ์ •๋ฆฝ์„ ์›ํ˜•์œผ๋กœ ๊ฐ€์ •ํ–ˆ์„ ๋•Œ, ๊ฒฐ์ •๋ฆฝ๊ณ„ ๊ณก๋ฅ ์€ ๊ฒฐ์ •๋ฆฝ ๋ฐ˜๊ฒฝ์— ๋ฐ˜๋น„๋ก€ํ•œ๋‹ค. ๊ฒฐ์ •๋ฆฝ์ด ์ปค์งˆ์ˆ˜๋ก ๊ฒฐ์ •๋ฆฝ๊ณ„ ๊ณก๋ฅ  ๋ณ€ํ™”๋Š” ๋ฏธ๋ฏธํ•ด์ ธ์„œ, ๊ธฐ๊ณ„ํ•™์Šต์œผ๋กœ ํ‰๊ฐ€ํ•  ๋•Œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์˜ ์˜ค์ฐจ๊ฐ€ ์ปค์ง€๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ CLํ˜• ์ด๋ฏธ์ง€๋กœ CNN์„ ํ›ˆ๋ จํ•˜์˜€์„ ๋•Œ์—๋„ ๊ฐ™์€ ๊ฒฐ๋ก ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. CNN์€ ํ…Œ๋‘๋ฆฌ ๊ฒ€์ถœ(edge detection)์„ ํ†ตํ•˜์—ฌ ๋ฌผ์ฒด๋ฅผ ํŒ๋ณ„ํ•˜๋Š” ๋Šฅ๋ ฅ์ด ํƒ์›”ํ•œ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค[27,28]. GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์—์„œ๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ๋ฐฑ์ƒ‰ ๋ฐ”ํƒ•์˜ ํ‘์ƒ‰์œผ๋กœ ๋šœ๋ ทํ•˜๊ฒŒ ์ •์˜๋˜์—ˆ์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ CLํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฉฐ ๊ฒฐ์ •๋ฆฝ ๊ฐ„ ์ƒ‰์ƒ ๋Œ€๋น„(color contrast)๋กœ ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ์ •์˜๋œ๋‹ค๋Š” ์ฐจ์ด์ ์ด ์žˆ๋‹ค.

์œ„์˜ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•˜์˜€์„ ๋•Œ, ํ•œ ์ข…๋ฅ˜์˜ ํ‘œํ˜„ ๋ฐฉ์‹์œผ๋กœ ๊ด€์ฐฐ๋œ ์ด๋ฏธ์ง€๋กœ์„œ ๊ธฐ๊ณ„ํ•™์Šต์„ ์ˆ˜ํ–‰ํ–ˆ์„ ๋•Œ, ๋‹ค๋ฅธ ๋ฐฉ์‹์˜ ๊ฒฐ์ •๋ฆฝ ๊ตฌ์กฐ ์ด๋ฏธ์ง€๋Š” ์ œ๋Œ€๋กœ ํ‰๊ฐ€ํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ๊ฒฐ๋ก ์ง€์„ ์ˆ˜ ์žˆ๋‹ค. CLํ˜•๊ณผ GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์€ ์ƒํ˜ธ ๊ฐ„ ์ด๋ฏธ์ง€ ๋ถ„์„์„ ์ ์ ˆํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ์ด๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„ ์ •์˜ ๋ฐฉ๋ฒ•์— ์ฐจ์ด๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ํŒ๋‹จ๋œ๋‹ค. ๋‹ค์–‘ํ•œ ๋ฏธ์„ธ์กฐ์ง์—์„œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ๊ธฐ๊ณ„ํ•™์Šต์„ ์œ„ํ•ด์„œ๋Š” ๋ฐฉ๋Œ€ํ•œ ์ข…๋ฅ˜์˜ ๋ฏธ์„ธ์กฐ์ง์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์š”๊ตฌ๋œ๋‹ค.

4. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ์ด์šฉํ•˜์—ฌ ์ •์ƒ ๊ฒฐ์ •๋ฆฝ์— ๋Œ€ํ•œ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํŠนํžˆ ๊ฒฐ์ •๋ฆฝ ์ƒ‰์ƒ ๋Œ€๋น„๋กœ ์ •์˜๋˜๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ๊ฐ€์ง„ ๊ฒฐ์ •๋ฆฝ ์กฐ์ง(CLํ˜•)์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ•™์Šต์— ์‚ฌ์šฉ๋œ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€๋Š” ์ƒ์žฅ๋ชจ๋ธ์„ ํ†ตํ•˜์—ฌ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ๊ธฐ๊ณ„ํ•™์Šต์œผ๋กœ ๋ฏธ์„ธ์กฐ์ง ์ด๋ฏธ์ง€์˜ ์ •๋Ÿ‰์  ํ‰๊ฐ€ ๊ฐ€๋Šฅ ์—ฌ๋ถ€์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ๊ฒฐ์ •๋ฆฝ์ด ์„ ๋ถ„์œผ๋กœ ํ‘œ์‹œ๋˜๋Š” GBํ˜• ์ด๋ฏธ์ง€๋กœ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ๊ณผ ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ์ด์— ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค.

1. ๊ธฐ๊ณ„ํ•™์Šต ๊ฒฐ๊ณผ ํ•™์Šต๋ฒ”์œ„ ๋‚ด์—์„œ ์˜ˆ์ธก๋œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋Š” ์‹ค์ œ ์ธก์ •๋œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์™€ ๋†’์€ ์ •ํ™•๋„๋กœ ์ผ์น˜ํ•˜์˜€๋‹ค. ํ•™์Šต๋ฒ”์œ„ ๋‚ด์—์„œ ๊ธฐ๊ณ„ํ•™์Šต์˜ ๊ฒฐ๊ณผ๊ฐ€ ์ ์ ˆํ•œ ๊ฒฝ์šฐ, ํ•™์Šต๋ฒ”์œ„ ์™ธ์—์„œ๋„ ๊ธฐ๊ณ„ํ•™์Šต ๊ฒฐ๊ณผ์˜ ์ •ํ™•๋„๋Š” ๋งค์šฐ ๋†’๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, ์ด ๊ฒฝ์šฐ์—๋Š” ๊ธฐ๊ณ„ํ•™์Šต์„ ์ด๋ฏธ์ง€์˜ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ์™€ ๊ด€๊ณ„์—†์ด ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋‹ค.

2. ์ค‘๊ฐ„์ธต ์ด๋ฏธ์ง€ ๋ถ„์„ ๊ฒฐ๊ณผ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ์‹ ๊ฒฝ๋ง์€ ๊ฒฐ์ •๋ฆฝ ์ „์ฒด์˜ ๋ชจ์–‘์„ ์ธ์ง€ํ•˜์ง€ ์•Š๊ณ , ๊ฒฐ์ •๋ฆฝ๊ณ„์˜ ์„ฑ๋ถ„์„ ์ฃผ๋กœ ๊ฐ์ง€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

3. GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์€ ๋ฐฑ์ƒ‰ ๋ฐ”ํƒ•์— ํ‘์ƒ‰์œผ๋กœ ํ‘œ์‹œ๋˜๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ์ธ์ง€ํ•˜์˜€์œผ๋ฉฐ, CLํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์—์„œ๋Š” ๊ฒฐ์ •๋ฆฝ ๊ฐ„์ด ์ƒ‰์ƒ ๋Œ€๋น„๋กœ ๋‚˜ํƒ€๋‚œ ๊ฒฐ์ •๋ฆฝ๊ณ„๋ฅผ ์ธ์ง€ํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์ด CLํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ๊ณผ GBํ˜• ํ›ˆ๋ จ ๋ชจ๋ธ์€ ์„œ๋กœ ์ธ์‹ํ•˜๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ๋‹ค๋ฅด๋ฏ€๋กœ, ๊ต์ฐจ ์ด๋ฏธ์ง€ ๊ฒ€์ฆ์—์„œ๋Š” ์ƒํ˜ธ ๊ฐ„ ํ‰๊ฐ€๊ฐ€ ์ ์ ˆํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค.

4. ๋‹ค์–‘ํ•œ ๋ฏธ์„ธ์กฐ์ง์—์„œ ํ‰๊ท  ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ๊ธฐ๊ณ„ํ•™์Šต์„ ์œ„ํ•ด์„œ๋Š” ๋งŽ์€ ๊ฐ•์ข…, ๋‹ค์–‘ํ•œ ๊ฒฐ์ •๋ฆฝ์˜ ๋ชจ์–‘, ๋„“์€ ๋ฒ”์œ„์˜ ํ‰๊ท ์ž…์žํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๋ฏธ์„ธ์กฐ์ง์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์š”๊ตฌ๋œ๋‹ค.

REFERENCES

1 
Saunders R., Achuthan A., Iliopoulos A., Michopoulos J., Bagchi A., Influence of Grain Size and Shape on Mechanical Properties of Metal Am Materials,144, 1751 (2018)Google Search
2 
Morris J. W., https://doi.org/10.2172/861397, The Influence of Grain Size on the Mechanical Properties of Steel, (2001)Google Search
3 
Yuan X., Chen L., Zhao Y., Di H., Zhu F., Procedia Eng,81, 143 (2014)Google Search
4 
ASTM E112-13, Standard Test Methods for Determining Average Grain Size, https://www.astm.org/e0112-13r21.html https://www.astm.org/e0112-13r21.html, (2022)
5 
Bostanabad R., Zhang Y., Li X., Kearney T., Brinson L. C., Apley D. W., Liu W. K., Chen W., Prog. Mater. Sci,95, 1 (2018)Google Search
6 
Chollet F., Deep Learning with Python,Manning Publications Co, Shelter Island (2018)Google Search
7 
Gola J., Britz D., Staudt T., Winter M., Schneider A. S., Ludovici M., Mรผcklich F., Comput. Mater. Sci,148, 324 (2018)Google Search
8 
Jeong S.-J., Hwang I.-K., Cho I.-S., Kim H.-S., Korean J. Met. Mater,57, 184 (2019)Google Search
9 
Kondo R., Yamakawa S., Masuoka Y., Tajima S., Asahi R., Acta Mater,141, 29 (2017)Google Search
10 
Wan W., Li D., Wang H., Zhao L., Shen X., Sun D., Chen J., Xiao C., Crystals,11, 1060 (2021)Google Search
11 
Nikoliฤ‡ F., ล tajduhar I., ฤŒanaฤ‘ija M., Metals,11, 756 (2021)Google Search
12 
Lee H.-J., Hwang I.-K., Jeong S.-J., Cho I.-S., Kim H.-S., Korean J. Met. Mater,59, 430 (2021)Google Search
13 
Baggs G. S., Guerrier P., Loeb A., Jones J. C., https://doi.org/10.48550/ARXIV.2005.09634, Automated Copper Alloy Grain Size Evaluation Using a Deep-learning CNN, (2020)Google Search
14 
Lee J.-C., Hsu H.-H., Liu S.-C., Chen C.-H., Huang H.-C., Metals,11, 1547 (2021)Google Search
15 
Berus L., Skakun P., Rajnovic D., Janjatovic P., Sidjanin L., Ficko M., Metals,10, 1381 (2020)Google Search
16 
Dengiz O., Smith A. E., Nettleship I., Comput Ind,56, 854 (2005)Google Search
17 
Jung J.-H., Lee S. J., Kim H. S., Materials,15, 6954 (2022)Google Search
18 
Kim S. G., Kim D. I., Kim W. T., Park Y. B., Phys. Rev. E,74, 061605 (2006)Google Search
19 
Kamachali R. Darvishi, Steinbach I., Acta Mater,60, 2719 (2012)Google Search
20 
Kim H.-S., Comput. Mater. Sci,50, 600 (2010)Google Search
21 
LeCun Y., Huang Fu Jie, Bottou L., Learning methods for generic object recognition with invariance to pose and lighting,97-104, CVPR 2004, IEEE (2004)Google Search
22 
Wasserman P. D., Advanced methods in neural computing,Van Nostrand Reinhold (1993)Google Search
23 
Saito Goki, Deep Learning from Scratch,Oโ€™Reilly Japan (2016)Google Search
24 
D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, ArXiv:1412.6980 [Cs]. (2017). http://arxiv.org/abs/1412.6980 (accessed November 30, 2020),
25 
Python Software Foundation, Python.Org. (n.d.). https://www.python.org/psf/, (2021)
26 
Keras: the Python deep learning API, (n.d.). https://keras.io/, (2022)
27 
Liu Y., Cheng M. M., Hu X., Bian J. W., Zhang L., Bai X., Tang J., TPAMI / PAMI,41, 1939 (2019)Google Search
28 
Zhao J., Wang H., Yu D., Int. J. Circ. Theor. Appl,31, 119 (2003)Google Search

Figures and Table

Fig. 1.

Grain structure images used in this study: (a) CL- and (b) GB-type images simulated with the phase-field model, and (c) CL- and (d) GB-type experimental images collected across the internet

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f1.jpg
Fig. 2.

Schematic presentation of neural network used in this study. Each Conv layer is the combination of convolution layer, activation function, and pooling layer.

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f2.jpg
Fig. 3.

Changes of losses for training and test data during the training. Overfitting was found after 50,000 epochs. Therefore, the optimum training steps for CNN was determined as 50,000 epochs.

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f3.jpg
Fig. 4.

Comparison between the measured and predicted average grain areas for (a) 3,000 training and (b) 1,000 test data. X and Y axes represent measured (Ameasured) and predicted (Apredicted) values of the average grain size, respectively. Also, the comparison of accuracy (Ameasured/Apredicted) between the measured and predicted numbers of grains for (c) the training and (d) the test data.

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f4.jpg
Fig. 5.

Comparison between the measured and predicted average grain area for another test datasets of (a) 300 CL-type, and (b) 300 GB-type images. Note that the grain size ranges were between 50 and 3200 pixels, while the ranges for the training dataset was between 1200 and 2400, approximately.

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f5.jpg
Fig. 6.

Comparison between the measured and predicted average grain area for datasets of experimental images using the network trained with (a) CL-type, and (b) GB-type images[17].

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f6.jpg
Fig. 7.

Mid-layer images for a CL-type image. (a) Original image (512ร—512 pixels), and mid-layer images after Conv1 (128ร—128 pixels each) and Conv2 (64ร—64 pixels each) layers with (b) the model trained using CL-type images, and (c) the model trained using GB-type images[17].

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f7.jpg
Fig. 8.

Mid-layer images for a GB-type image. (a) Original image (512ร—512 pixels), and mid-layer images after Conv1 (128ร—128 pixels each) and Conv2 (64ร—64 pixels each) layers with (b) the model trained using CL-type images, and (c) the model trained using GB-type images[17].

../../Resources/kim/KJMM.2023.61/kjmm-2023-61-5-379f8.jpg
Table 1.

Model summary of CNN to estimate average grain size used in this study.

Layer Sublayer Input shape Channels / Nodes Filter Padding Stride Activation Output shape
Input โ€“ โ€“ 3 โ€“ โ€“ โ€“ โ€“ 512ร—512ร—3
Resize โ€“ 512ร—512ร—3 3 โ€“ โ€“ โ€“ โ€“ 256ร—256ร—3
CP1 Convolution 256ร—256ร—3 32 3ร—3 1ร—1 1ร—1 ReLU 256ร—256ร—32
Max pooling 256ร—256ร—32 โ€“ 2ร—2 โ€“ 2ร—2 โ€“ 128ร—128ร—32
CP2 Convolution 128ร—128ร—32 32 3ร—3 1ร—1 1ร—1 ReLU 128ร—128ร—32
Max pooling 128ร—128ร—32 โ€“ 2ร—2 โ€“ 2ร—2 โ€“ 64ร—64ร—32
CP3 Convolution 64ร—64ร—32 32 3ร—3 1ร—1 1ร—1 ReLU 64ร—64ร—32
Max pooling 64ร—64ร—32 โ€“ 2ร—2 โ€“ 2ร—2 โ€“ 32ร—32ร—32
CP4 Convolution 32ร—32ร—32 32 3ร—3 1ร—1 1ร—1 ReLU 32ร—32ร—32
Max pooling 32ร—32ร—32 โ€“ 2ร—2 โ€“ 2ร—2 โ€“ 16ร—16ร—32
Flatten โ€“ 16ร—16ร—32 8192 โ€“ โ€“ โ€“ โ€“ 8192ร—1
Dropout 0.5 8192ร—1 4096 โ€“ โ€“ โ€“ โ€“ 4096ร—1
FC โ€“ 4096ร—1 128 โ€“ โ€“ โ€“ ReLU 1
Output โ€“ โ€“ 1 โ€“ โ€“ โ€“ Linear Regressed value