The Journal of
the Korean Journal of Metals and Materials

The Journal of
the Korean Journal of Metals and Materials

Monthly
  • pISSN : 1738-8228
  • eISSN : 2288-8241

Editorial Office

REFERENCES

1 
N. L., X. F., O. A., de Matos E., M J., Environ. Nanotechnol. Monit. Manag,16, 100466 (2021)Google Search
2 
Omrani N., Nezamzadeh-Ejhieh A., Desal. Water Treat,162, 290 (2019)Google Search
3 
Mitsika E. E., Christophoridis C., Kouinoglou N., Lazaridis N., Zacharis C. K., Fytianos , J. Hazard. Mater,403, 123819 (2021)Google Search
4 
Wu S., Hu Y. H., Chem. Eng. J,409, 127739 (2021)Google Search
5 
Porras J., Bedoya C., Silva-Agredo J., Water Res,94, 1 (2016)Google Search
6 
Akbari S., Moussavi G., Giannakis S., J. Mol. Liq,324, 114831 (2021)Google Search
7 
Antonin V. S., Santos M. C., Garcia-Segura S., Brillas E., Water Res,83, 31 (2015)Google Search
8 
Wen X. -J., Niu C. -G., Zhang L., Liang C., Guo H., Zeng G. -M., J. Catal,358, 141 (2018)Google Search
9 
Durán-Álvarez J. C., Avella E., Ramírez-Zamora R. M., Zanella R., Catal Today,266, 175 (2016)Google Search
10 
Abinaya S., Kavitha H. P., Prakash M., Muthukrishnaraj A., Sustain. Chem. Pharm,19, 100368 (2021)Google Search
11 
Lamhani M., Chchiyai Z., Elomrani A., Manoun B., Hasnaoui A., Inorg. Chem,62, 13405 (2023)Google Search
12 
Murthy D. H. K., Matsuzaki H., Wang Q., Suzuki Y., Seki K., Hisatomi T., Yamada T., Kudo A., Domen K., Furube A., Sustain. Energy Fuels,3, 208 (2019)Google Search
13 
Soltani T., Zhu X., Yamamoto A., Singh S. P., Fudo E., Tanaka A., Appl. Catal. B: Environ,286, 119899 (2021)Google Search
14 
Wei N., Chen Y., Wang X., Kan M., Zhang T., Zhao Y., Fundam. Res,3, 918 (2023)Google Search
15 
Sikam P., Moontragoon P., Sararat C., Karaphun A., Swatsitang E., Pinitsoontorn S., Thongbai P., Appl. Surf. Sci,446, 92 (2018)Google Search
16 
Wu G., Li P., Xu D., Luo B., Hong Y., Shi W., Liu C., Appl. Surf. Sci,333, 39 (2015)Google Search
17 
Wang L., Wang L., Zhao K., Cheng D., Yu W., Li J., Wang J., Shi F., Int. J. Hydrog. Energy,47, 39047 (2022)Google Search
18 
Lu L., Lv M., Wang D., Liu G., Xu X., Appl. Catal. B: Environ,200, 412 (2017)Google Search
19 
Kang H. W., Park S. B., Int. J. Hydrog. Energy,41, 13970 (2016)Google Search
20 
Modak B., Ghosh S. K., J. Phys. Chem. C,119, 23503 (2015)Google Search
21 
Modak B., Ghosh S. K., Insight into the enhanced photocatalytic activity of SrTiO3 in the presence of a (Ni, V/Nb/Ta/Sb) pair,Phys. Chem. Chem. Phys,20, 20078-20087, (2018)Google Search
22 
Irie H., Maruyama Y., Hashimoto K., Ag+- and Pb2+- doped SrTiO3 photocatalysts. A correlation between band structure and photocatalytic activity,J. Phys. Chem. C,111, 1847-1852, (2007)Google Search
23 
Modak B., Ghosh S. K., Origin of enhanced visible light driven water splitting by (Rh, Sb)-SrTiO3,Phys. Chem. Chem. Phys,17, 15274-15283, (2015)Google Search
24 
Modak B., Srinivasu K., Ghosh S. K., Improving photocatalytic properties of SrTiO3 through (Sb, N) codoping: A hybrid density functional study,RSC Adv,4, 45703-45709, (2014)Google Search
25 
Zhang C., Jiang N., Xu S., Li Z., Liu X., Cheng T., Han A., Lv H., Sun W., Hou Y., Towards high visible light photocatalytic activity in rare earth and N co-doped SrTiO3: A first principles evaluation and prediction,RSC Adv,7, 16282-16289, (2017)Google Search
26 
Wei Y., Wan J., Wang J., Zhang X., Yu R., Yang N., Wang D., Hollow mMultishelled structured SrTiO3 with La/Rh co-doping for enhanced photocatalytic water splitting under visible light,Small,17, 2005345 (2021)Google Search
27 
Goncalves N. P. F., Paganini M. C., Armillotta P., Cerrato E., Calza P., The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation,J. Environ. Chem. Eng,7, 103475 (2019)Google Search
28 
Flores-Lasluisa J. X., Huerta F., Cazorla-Amorós D., Morallón E., Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites,J. Colloid Interface Sci,556, 658-666, (2019)Google Search
29 
Zhang X., Tang P., Zhai G., Lin X., Zhang Q., Chen J., Wei X., Regulating phase junction and oxygen vacancies of TiO2 nanoarrays for boosted photoelectrochemical water oxidation,Chem. Res. Chin. Univ,38, 1292-1300, (2022)Google Search
30 
Mishra A., Parangusan H., Bhadra J., Ahmed Z., Mallick S., Touati F., Al-Thani N., Synthesis and photoelectrochemical performance of Co doped SrTiO3 nanostructures photoanode,Environ. Prog. Sustain. Energy,42, (2023)Google Search
31 
Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., Dal Corso A., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials,J. Phys. Condens. Matter,21, 395502 (2009)Google Search
32 
Lamhani M., Chchiyai Z., Elomrani A., Manoun B., Hasnaoui A., Enhanced Photocatalytic Water Splitting of SrTiO3 Perovskite through Cobalt Doping: Experimental and Theoretical DFT Understanding,Inorg. Chem,62, 13405 (2023)Google Search
33 
Momma K., Izumi F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,J. Appl. Crystallogr,44, 1272 (2011)Google Search
34 
Perdew J.P., Chevary J., Vosko S., Jackson K., Perderson M., Singh D., Fiolhais C., Phys. Rev. B,48, 4978 (1993)Google Search
35 
Parmar V. B., Vora A. M., Study of Structural and Electronic Properties of TMDC Compounds: A DFT Approach,Jordan Journal of Physics,16, 253 (2023)Google Search
36 
Ciobota C. F., Piticescu R. M., Neagoe C., Tudor I. A., Matei A., Dragut D. V., Sobetkii A., Anghel E. M., Stanoiu A., Simion C. E., Florea O. G., Bejan S. E., Nanostructured cobalt doped barium strontium titanate thin films with potential in CO2 detection,Materials,14, 4797 (2020)Google Search
37 
Ariyakkani P., Suganya L., Sundaresan B., Investigation of the structural, optical and magnetic properties of Fe doped ZnO thin films coated on glass by sol-gel spin coating method,J Alloys Compd,695, 3467 (2017)Google Search
38 
Mishra A., Parangusan H., Bhadra J., Ahmed Z., Mallick S., Touati F., Al-Thani N., Synthesis and photoelectrochemical performance of Co doped SrTiO3 nanostructures photoanode,Environ Prog Sustainable Energy,42, (2023)Google Search
39 
Galloni M. G., Cerrato G., Giordana A., Falletta E., Bianchi C. L., Sustainable solar light photodegradation of diclofenac by nano- and micro-sized SrTiO3,Catalysts,12, 804 (2022)Google Search
40 
Bedon A., Glisenti A., Developing functionality in perovskites from abatement of pollutants to sustainable energy conversion and storage,Perovskite Materials, Devices and Integration,49IntechOpen (2020)Google SearchGoogle Search
41 
Shen L., Wang J., Xu G., Li H., Dou H., Zhang X., Adv. Energy Mater,5, 1400977 (2014)Google Search
42 
Kafeshani M. A., Mahdikhah V., Sheibani S., Facile preparation and modification of SrTiO3 through Ni–Cd codoping as an efficient visible-light-driven photocatalyst,Opt. Mater,133, 113080 (2022)Google Search
43 
Pilleux M. E., Grahmann C. R., Fuenzalida V. M., Hydrothermal strontium titanate films on titanium: An XPS and AES depth-profiling study,J. Am. Ceram. Soc,77, 1601 (1994)Google Search
44 
Diebold U., Madey T. E., TiO2 by XPS,Surf. Sci. Spectra,4, 227 (1996)Google Search
45 
Mahalingam S., Jayashree C., Ramu R., Elumalai B., Almutairi S. M., Muniyandi G. R., Kim J., Srinivasan A., Bakthavatchalam S., Atchudan R., Emerging silver-doped strontium titanate nanostructures as photocatalysts for the degradation of organic pollutants under visible light,J. Mol. Struct,1306, 137854 (2024)Google Search
46 
Srinivasan A., Kavitha H. P., Muniyandi G. R., Vennila J. P., Arulmurugan S., Lohita D., Prakash M., Improved photocatalytic efficiency of rare earth metal-incorporated magnesium oxide nano-hexagonal sheets for the degradation of ciprofloxacin and methylene blue dye under visible light irradiation,Results Chem,7, 101381 (2024)Google Search
47 
Raj M. G., Mahalingam S., Gnanarani S. V., Jayashree C., Ganeshraja A. S., Pugazhenthiran N., Rahaman M., Abinaya S., Senthil B., Kim J., TiO2 nanorod decorated with MoS2 nanospheres: An efficient dual-functional photocatalyst for antibiotic degradation and hydrogen production,Chemosphere,357, 142033 (2024)Google Search
48 
Mahalingam S., Neelan Y. D, Bakthavatchalam S., Al-Humaid L. A., Al-Dahmash N. D., Santhanam H., Yang T. -Y., Hossain N., Park S. H., Kim J., Effective visible-light-driven photocatalytic degradation of harmful antibiotics using reduced graphene oxide-zinc sulfide copper sulfide nanocomposites as a catalyst,ACS Omega,8, 32817 (2023)Google Search
49 
Mohd Azan N. A. A, Sagadevan S., Mohamed A. R., Nor Azazi A. H, Suah F. B. M., Kobayashi T., Adnan R., Mohd Kaus N. H., Solar light-induced photocatalytic degradation of ciprofloxacin antibiotic using biochar supported nano bismuth ferrite composite,Catalysts,12, 1269 (2022)Google Search
50 
Ngo H. -S., Nguyen T. -L., Tran N. -T., Le H. -C., Photocatalytic removal of ciprofloxacin in water by novel sandwich-like CuFe2O4 on rGO/halloysite material: Insights into kinetics and intermediate reactive radicals,Water,15, 1569 (2023)Google Search
51 
John S., Rathinavelu S., Mary M. S., Nambi I. M., Babu S. M., Thomas T., Singh S., Solar-driven hybrid photo-Fenton degradation of persistent antibiotic ciprofoxacin by zinc ferrite-titania heterostructures: Degradation pathway, intermediates, and toxicity analysis,Environ. Sci. Pollut. Res,30, 39605 (2023)Google Search
52 
El-Kemary M., El-Shamy H., El-Mehasseb I., Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles,J. Lumin,130, 2327 (2010)Google Search
53 
Yang Z., Xu X., Dai M., Wang L., Shi X., Guo R., Accelerated ciprofloxacin biodegradation in the presence of magnetite nanoparticles,Chemosphere,188, 168 (2017)Google Search
54 
Wen X. -J., Niu C. -G., Zhang L., Liang C., Guo H., Zeng G. -M., Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight,J. Catal,358, 141 (2018)Google Search
55 
Costa L. N., Nobre F. X., Lobo A. O., E., de Matos J. M., Photodegradation of ciprofloxacin using TiO2/SnO2 nanostructures,Environ. Nanotechnol. Monit. Manag,16, 100466 (2021)Google Search
56 
De Bel E., Janssen C., De Smet S., Langenhove H. V., Dewulf J., Sonolysis of ciprofloxacin in aqueous solution: Influence of operational parameters,Ultrason. Sonochem,18, 184 (2011)Google Search
57 
Deng J., Feng S., Zhang K., Li J., Wang H., Zhang T., Ma X., Heterogeneous activation of pPeroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH,Chem. Engg. J,308, 505 (2017)Google Search
58 
Hayri-Senel T., Kahraman E., Sezer S., Erdol-Aydin N., Nasun-Saygili G., Photocatalytic degradation of ciprofloxacin from water with waste polystyrene and TiO2 composites,Heliyon,10, (2024)Google Search
59 
Tayeb A. M., Hussein D. S., Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue,Am. J. Nanomater,3, 57 (2015)Google Search
60 
Mesquita W.D., de Jesus S.R., Oliveira M.C., Oliveira M. C., Pontes Ribeiro R. A., de Cássia Santos M. R., Junior M. G., Longo E., F, do Carmo Gurgel M., Barium strontium titanate-based perovskite materials from DFT perspective: assessing the structural, electronic, vibrational, dielectric and energetic properties,Theor Chem Acc,140, 27 (2021)Google Search
61 
Kim J. H., Kang E. S., Kim J. H., Effect of Sulfur Contents in NiZnS Composite Photocatalysts on Solar Water Splitting,Korean J. Met. Mater,61, 284 (2023)Google Search
62 
Lee E. B., Jo S. G., Kim S. J., Park G.-R., Lee J. W., Fabrication of Ruthenium-Based Transition Metal Nanoparticles/Reduced Graphene Oxide Hybrid Electrocatalysts for Alkaline Water Splitting,Korean J. Met. Mater,61, 3, 190-197, (2023)Google Search