The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office





Catalyst, Degradation, Formic acid, Palladium, Trinitrotoluene

1. Introduction

๊ตฐ ํ›ˆ๋ จ์žฅ ๋ฐ ์‚ฌ๊ฒฉ์žฅ, ๊ฑด์„ค๊ณต์‚ฌ ํ˜„์žฅ, ๊ด‘์‚ฐ, ํ™”์•ฝ ๋ฐ ํฌํƒ„ ์ œ์กฐ ์‹œ์„ค์—์„œ๋Š” 2,4,6-trinitrotoluene(TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX) ๋“ฑ๊ณผ ๊ฐ™์€ ํ™”์•ฝ๋ฅ˜๋ฅผ ๋งŽ์ด ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋‹ค. ํ™”์•ฝ๋ฅ˜๋Š” ์‚ฌ์šฉ๋ชฉ์ ์— ๋”ฐ๋ผ TNT ๋‹จ๋…์œผ๋กœ ์‚ฌ์šฉ๋˜๊ฑฐ๋‚˜, RDX ํ˜น์€ HMX์™€ ํ˜ผํ•ฉํ•˜์—ฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ํ† ์–‘ ๋ฐ ์ง€ํ•˜์ˆ˜๋ฅผ ๋น„๋กฏํ•œ ์ž์—ฐํ™˜๊ฒฝ ์˜ค์—ผ์˜ ์›์ธ์ด ๋˜๊ณ  ์žˆ๋‹ค(Brannon et al., 2000; Kalderis et al., 2011; Mese and Lehmpuhl, 2008; Zhang et al., 2011). ๋ฏธ๊ตญ์˜ ๊ฒฝ์šฐ 2013๋…„์„ ๊ธฐ์ค€์œผ๋กœ 30์—ฌ๊ฐœ์˜ ๊ตญ๊ฐ€์šฐ์„ ์ˆœ์œ„๋ชฉ๋ก(National Priority List; NPL)์—์„œ TNT๊ฐ€ ๊ฒ€์ถœ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ๋„ ์‚ฌ๊ฒฉ์žฅ ๋ฐ ํ›ˆ๋ จ์žฅ์—์„œ TNT์— ์˜ํ•œ ํ† ์–‘ ์˜ค์—ผ์ด ๋ฐœ๊ฒฌ๋˜๊ณ  ์žˆ๋‹ค(Bae and Park, 2014). ํŠนํžˆ TNT๋Š” ์‚ฌ๊ฒฉ ํ›ˆ๋ จ ์‹œ ๋ถˆ์™„์ „ ์—ฐ์†Œ ๋˜๋Š” ๋ถˆ๋ฐœํƒ„ ๋ฐœ์ƒ ๋“ฑ์œผ๋กœ ํ™˜๊ฒฝ์œผ๋กœ ์œ ์ถœ๋˜๋ฉฐ, ํ† ์–‘ ์†์—์„œ ๋ฐœ๊ฒฌ๋˜๋Š” TNT ๊ฒฐ์ •์€ ๊ฐ•์ˆ˜์— ์˜ํ•ด ์šฉํ•ด๋˜์–ด ์ง€์†์ ์ธ ํ™˜๊ฒฝ ์˜ค์—ผ์›์œผ๋กœ ์ž‘์šฉํ•œ๋‹ค(Brannon et al., 2000).

๋™๋ฌผ ์‹คํ—˜ ๊ฒฐ๊ณผ์— ์˜ํ•˜๋ฉด ๊ณ ๋†๋„์˜ TNT ์„ญ์ทจ๋Š” ๊ฐ„, ํ˜ˆ์•ก, ๋ฉด์—ญ ์ฒด๊ณ„์— ์†์ƒ์„ ์ฃผ๋ฉฐ, ์ž์—ฐํ™˜๊ฒฝ ์ƒ์˜ TNT๋Š” ๊ณฐํŒก์ด, ์„ธ๊ท , ํšจ๋ชจ ๋“ฑ์˜ ์„ฑ์žฅ์„ ์–ต์ œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค(Kim et al., 2002). ๋ฏธ๊ตญ ํ™˜๊ฒฝ๋ถ€๋Š” TNT๋ฅผ ๋จน๋Š”๋ฌผ ์ˆ˜์งˆ๊ธฐ์ค€์—์„œ ์ธ๊ฐ„์—๊ฒŒ ์•”์„ ์œ ๋ฐœํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ๋ฌผ์งˆ์ธ โ€˜Cโ€™ ๋“ฑ๊ธ‰์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ํ—ˆ์šฉ๋˜๋Š” ์ตœ๋Œ€ ์„ญ์ทจ๋Ÿ‰(reference dose, Rfd)์€ 0.0005 mg/kg/day์ด๋‹ค(U.S. EPA, 2012). ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ ์•„์ง TNT์— ๋Œ€ํ•œ ํ† ์–‘ ๋ฐ ์ˆ˜์งˆ ํ™˜๊ฒฝ๊ธฐ์ค€์€ ์ •๋ฆฝ๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ ์‚ฌ์šฉ์ค‘์ธ ๊ตฐ ์‚ฌ๊ฒฉ์žฅ ๋ฐ ํ›ˆ๋ จ์žฅ ํ† ์–‘์€ TNT์— ์˜ํ•ด ์˜ค์—ผ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ตฐ ์‚ฌ๊ฒฉ์žฅ ๋ฐ ํ›ˆ๋ จ์žฅ ์šฉ๋„ ์ข…๋ฃŒ ํ›„์—๋Š” ํ–ฅํ›„ ์•ˆ์ „ํ•œ ์‚ฌ์šฉ์„ ์œ„ํ•˜์—ฌ ๋ฏผ๊ฐ„์ด์ „ ์ด์ „์— ํ† ์–‘ ๋ฐ ์ง€ํ•˜์ˆ˜ ์˜ค์—ผ์— ๋Œ€ํ•œ ํ™˜๊ฒฝ์ •ํ™”๊ฐ€ ์„ ํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค.

ํ† ์–‘, ์Œ์šฉ์ˆ˜, ํ•˜์ˆ˜์˜ TNT ์ œ๊ฑฐ๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋ฌผ๋ฆฌ, ํ™”ํ•™, ์ƒ๋ฌผํ•™์ ์ธ ์›๋ฆฌ๋ฅผ ์ด์šฉํ•œ ๋ถ„ํ•ด ๋ฐฉ๋ฒ•๋“ค์ด ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋‚˜, ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ์ˆ ์  ์ œํ•œ์œผ๋กœ ์นœํ™˜๊ฒฝ์ ์ธ ์ฒ˜๋ฆฌ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํ™œ์„ฑํƒ„์„ ํ™œ์šฉํ•œ ํก์ฐฉ์€ ๋ฌผ๋ฆฌ์  ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ๋งค์งˆ ์†์˜ TNT ์ œ๊ฑฐ๋ฅผ ์œ„ํ•œ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค(Zhang et al., 2011). ํ•˜์ง€๋งŒ ํ™œ์„ฑํƒ„์„ ์ด์šฉํ•œ ํก์ฐฉ์€ ํ™œ์„ฑํƒ„ ๊ฐ€๊ฒฉ์ด ๋น„์‹ธ๊ณ , ์™„์ „ํ•œ TNT ๋ถ„ํ•ด๋ฅผ ์œ„ํ•ด ๋Œ€๊ธฐ์˜ค์—ผ ๋ฐœ์ƒ ์šฐ๋ ค๊ฐ€ ์žˆ๋Š” ์ถ”๊ฐ€์ ์ธ ์†Œ๊ฐ ์ ˆ์ฐจ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด์— ๋Œ€ํ•œ ๋ณด์™„ ๋ฐฉ์•ˆ์œผ๋กœ Wei et al. (2011)์€ ํ™œ์„ฑํƒ„์— Cu2+๋ฅผ ์ฒจ์ฐฉ์‹œ์ผœ TNT๋กœ ์˜ค์—ผ๋œ ๋ฌผ์˜ ํ™”ํ•™์ ์‚ฐ์†Œ์š”๊ตฌ๋Ÿ‰(COD)์„ ๋‚ฎ์ถ”์—ˆ๋‹ค. ์ƒ๋ฌผํ•™์  ์ฒ˜๋ฆฌ ๊ณต๋ฒ•์€ ์ €๋น„์šฉ๊ณผ ์šด์ „์˜ ์šฉ์ด์„ฑ์—์„œ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋‚˜ ๊ธด ์ฒ˜๋ฆฌ ์†Œ์š” ์‹œ๊ฐ„๊ณผ ์ฒ˜๋ฆฌ ํšจ์œจ์—์„œ ํ•œ๊ณ„๋ฅผ ์ง€๋‹Œ๋‹ค(Kwon et al., 2004). ๋ฏธ์ƒ๋ฌผ์„ ์ด์šฉํ•œ ๋ถ„ํ•ด๋Š” ์ž์—ฐ ํ™˜๊ฒฝ์˜ ์˜ํ–ฅ์„ ๋งŽ์ด ๋ฐ›์œผ๋ฉฐ, ๋ถˆ์™„์ „ํ•œ ๋ถ„ํ•ด๋Š” ์˜ค์—ผ๋ฌผ์งˆ๋ณด๋‹ค ๋” ํ•ด๋กœ์šด ๋ถ„ํ•ด์‚ฐ๋ฌผ์„ ๋งŒ๋“ค์–ด ๋‚ด๊ธฐ๋„ ํ•œ๋‹ค.

TNT ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•˜์—ฌ ๊ณ ๋„์‚ฐํ™”๊ณต์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ ธ์˜ค๊ณ  ์žˆ๋‹ค(Ayoub et al., 2010). ๊ณ ๋„์‚ฐํ™”๊ณต์ •์„ ํ™œ์šฉํ•œ ์šฉ์•ก ์†์˜ TNT ๋ถ„ํ•ด๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์ฒ ์„ ํ•จ์œ ํ•œ ๊ด‘๋ฌผ๋“ค๊ณผ ๊ณผ์‚ฐํ™”์ˆ˜์†Œ๋ฅผ ํ™œ์šฉํ•˜๋Š” ํŽœํ†ค ๋ถ„ํ•ด(Ayoub et al., 2011; Matta et al., 2007), UV์™€ ํŽœํ†ค๋ฐ˜์‘์„ ๊ฒฐํ•ฉํ•œ ๋ถ„ํ•ด(Chen et al., 2005; Li et al., 1998), ๊ด‘์—๋„ˆ์ง€์™€ ํŽœํ†ค๋ฐ˜์‘์„ ๊ฒฐํ•ฉํ•œ ๋ถ„ํ•ด(Liou et al., 2004), UV์™€ ๊ณผ์‚ฐํ™”์ˆ˜์†Œ๋ฅผ ์ด์šฉํ•œ ๋ถ„ํ•ด(Kwon et al., 2010), TiO2 ์ด‰๋งค๊ฐ€ ํฌํ•จ๋œ ์šฉ์•ก์— ๊ณผ์‚ฐํ™”์ˆ˜์†Œ๋ฅผ ๋„ฃ๊ณ  ์ž์™ธ์„ ์„ ์กฐ์‚ฌํ•˜๋Š” ๋ถ„ํ•ด(Dillert et al., 1996; Shin and Kim, 2002; Son et al., 2004), ๊ทธ๋ฆฌ๊ณ  ์˜ค์กด ํ˜น์€ ์˜ค์กด๊ณผ UV๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ถ„ํ•ด(Chen et al., 2007), ์ดˆ์ŒํŒŒ๋ฅผ ํ™œ์šฉํ•œ ๋ถ„ํ•ด(Hoffmann et al., 1996), ๊ฐ๋งˆ์„ ์„ ์ด์šฉํ•œ ๋ถ„ํ•ด(Lee and Jeong, 2009; Lee and Lee, 2005) ๋“ฑ์„ ํฌํ•จํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๋ถ„ํ•ด ๊ณต์ •์€ TNT ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค๋ฅธ ์œ ๊ธฐ๋ฌผ๋“ค์—๊ฒŒ๋„ ๋น„์„ ํƒ์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ณ  ํƒ„ํ™”์ˆ˜์†Œ๋ฅผ ์‚ฐํ™”์‹œ์ผœ ์žฌํ™œ์šฉํ•  ์ˆ˜ ์—†๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋ฌผ ์†์— ํฌํ•จ๋œ ์‚ด์ถฉ์ œ ๋ฐ ์œ ํ•ดํ•œ ํ• ๋กœ๊ฒ ๋ฌผ์งˆ๋“ค์„ ๋ถ„ํ•ดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ด‰๋งค๋ฅผ ํ™œ์šฉํ•œ ํ™˜์›๊ธฐ์ˆ ๋“ค์ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค. ์ด‰๋งค๋ฅผ ํ™œ์šฉํ•œ ์ˆ˜์งˆ ์˜ค์—ผ๋ฌผ์งˆ์˜ ๋ถ„ํ•ด๋Š” ์ธ๊ฐ„์ด ํ™œ๋™ํ•˜๋Š” ์˜จ๋„์™€ ์••๋ ฅ ํ•˜์—์„œ ์‹ ์†ํžˆ ๋ฐ˜์‘ํ•˜๋ฉฐ, ๋ฐ˜์‘๊ธฐ ๊ทœ๋ชจ๊ฐ€ ์ž‘๊ธฐ ๋•Œ๋ฌธ์— ํ™œ์šฉ์ด ์šฉ์ดํ•˜๋‹ค. Hundal et al. (1997)์€ ์˜๊ฐ€์ฒ  ํ˜น์€ ์˜๊ฐ€์ฒ ๊ณผ ์ด์–ด์ง„ ๊ณผ์‚ฐํ™”์ˆ˜์†Œ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ํ™”์•ฝ๋ฅ˜๋กœ ์˜ค์—ผ๋œ ์šฉ์•ก์„ ์ •ํ™”ํ•˜์˜€๊ณ , Zhang et al. (2010)์€ ๋‚˜๋…ธ ์‚ฌ์ด์ฆˆ์˜ ์˜๊ฐ€์ฒ ์„ ํ™œ์šฉํ•˜์—ฌ TNT ์šฉ์•ก์„ ๋ถ„ํ•ดํ•˜์˜€์œผ๋ฉฐ, ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋‚ฎ์€ pH์—์„œ ์ˆ˜์†Œ ์ด์˜จ๋“ค์ด TNT์˜ ๋ถ„ํ•ด๋ฅผ ์ด‰์ง„ํ•จ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. Bae (2006)๋Š” ๋งˆ์ดํฌ๋กœ์™€ ๋‚˜๋…ธ ํฌ๊ธฐ์˜ ์˜๊ฐ€์ฒ ์„ ํ™œ์šฉํ•˜์—ฌ TNT ๋“ฑ์— ๋Œ€ํ•œ ํ™˜์› ๋™์—ญํ•™์„ ์ธก์ •ํ•˜์˜€๋‹ค.

์ตœ๊ทผ์—๋Š” palladium (Pd)๊ณผ ์ˆ˜์†Œ๋ฅผ ํ™œ์šฉํ•œ ์œ ๊ธฐ๋ฌผ์งˆ ๋ถ„ํ•ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋„ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค(Sriwatanapongse, 2005). Lowry and Reinhard (1999)๋Š” ์ˆ˜์†Œ๊ฐ€ ์ถฉ๋ถ„ํžˆ ๊ณต๊ธ‰๋˜๋Š” ํ™˜๊ฒฝ์—์„œ Pd์„ ์ด์šฉํ•œ ํ™˜์›์„ฑ ์ด‰๋งค๋ฐ˜์‘์œผ๋กœ ํŠธ๋ฆฌํด๋กœ๋กœ์—ํ‹ธ๋ Œ(trichloroethylene, TCE)์„ ํ• ๋กœ๊ฒ์„ ํ•จ์œ ํ•œ ๋ถ„ํ•ด์‚ฐ๋ฌผ ์—†์ด ์—ํƒ„๊ณผ ์—ผ์‚ฐ์œผ๋กœ ๋ถ„ํ•ดํ•˜์˜€๋‹ค. Pd์„ ํก์ฐฉํ•œ ์•Œ๋ฃจ๋ฏธ๋‚˜(Al2O3) ์ด‰๋งค๋Š” ๋„“์€ ๋น„ํ‘œ๋ฉด์ , ์ ์ •ํ•œ ํ™”ํ•™์  ํ™œ์„ฑ๋„, ๊ทธ๋ฆฌ๊ณ  ์ €๋ ดํ•œ ๊ฐ€๊ฒฉ์œผ๋กœ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค(Nasri et al., 2015). Smith et al. (2001)์€ ์ˆ˜์†Œ์˜ ๋‚ฎ์€ ์šฉํ•ด๋„ ๋•Œ๋ฌธ์— ํฌ๋ฆ„์‚ฐ์„ ์งˆ์‚ฐ์œผ๋กœ ์˜ค์—ผ๋œ ์ง€ํ•˜์ˆ˜์˜ ํƒˆ์งˆํ™”๋ฅผ ์œ„ํ•œ ์ˆ˜์†Œ ๊ณต๊ธ‰์›์œผ๋กœ ํ™œ์šฉํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•„์ง๊นŒ์ง€ Pd ์ด‰๋งค์™€ ํฌ๋ฆ„์‚ฐ์„ ํ™œ์šฉํ•œ TNT ๋ถ„ํ•ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์•„์ง ๋ณด๊ณ ๋˜์ง€ ์•Š์•˜๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™˜์›๋ฐ˜์‘์— ์˜ํ•œ TNT์˜ ์‹ ์†ํ•œ ๋ถ„ํ•ด๋ฅผ ์œ„ํ•˜์—ฌ Pd์ด ์ฒจ์ฐฉ๋œ ์•Œ๋ฃจ๋ฏธ๋‚˜(Al2O3) ์ด‰๋งค(5% palladium catalyst impregnated onto alumina, henceforth Pd-Al catalyst)์™€ ์ˆ˜์†Œ์˜ ๊ณต๊ธ‰์›์œผ๋กœ์„œ ํฌ๋ฆ„์‚ฐ์„ ํ™œ์šฉํ•˜์—ฌ TNT์˜ ์‹ ์†ํ•œ ํ™˜์›์„ฑ ๋ถ„ํ•ด์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Pd-Al ์ด‰๋งค๋Ÿ‰(10 mg, 20 mg, 40 mg), TNT ์ดˆ๊ธฐ๋†๋„(10 mg/L, 30 mg/L, 50 mg/L), TNT ์šฉ์•ก์˜ ์˜จ๋„(4โ„ƒ, 20โ„ƒ, 30โ„ƒ), ์ˆ˜์†Œ๊ณต๊ธ‰์›์ธ ํฌ๋ฆ„์‚ฐ ๋†๋„(80 mg/L, 190 mg/L, 390 mg/L), TNT ์šฉ์•ก์˜ pH (3, 5, 10), ๊ทธ๋ฆฌ๊ณ  ์ธ๊ณต์ง€ํ•˜์ˆ˜์— ํฌํ•จ๋œ ์ด์˜จ ๋†๋„ ๋“ฑ์˜ ์˜ํ–ฅ์„ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. Pd-Al ์ด‰๋งค๋ฅผ ํ™œ์šฉํ•œ TNT ๋ถ„ํ•ด๋Š” ์˜๊ฐ€์ฒ (Fe0)์„ ์ด์šฉํ•˜์˜€์„ ๋•Œ์™€ ๋น„๊ตํ•˜์—ฌ ๋ฐ˜์‘์†๋„๋ฅผ ํ˜„๊ฒฉํžˆ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด์„œ, ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๊ฒŒ ๊ธฐ๋Œ€๋˜๋Š” ์ •ํ™”๋ฐฉ๋ฒ•์ด๋‹ค.

2. Materials and Methods

2.1. ์‹คํ—˜์žฌ๋ฃŒ

๋ณธ ์—ฐ๊ตฌ์— ์‚ฌ์šฉํ•œ TNT๋Š” A์‚ฌ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ฆ๋ฐ›์•˜๋‹ค. Pd-Al ์ด‰๋งค๋Š” Tokyo Chemical Industry Co.์—์„œ ๊ตฌ๋งค ํ›„ ๋ณ„๋„์˜ ์ฒ˜๋ฆฌ์—†์ด ์‚ฌ์šฉํ•˜์˜€๋‹ค. TNT์˜ ์ค‘๊ฐ„ ๋ถ„ํ•ด์‚ฐ๋ฌผ๋กœ ์˜ˆ์ƒ๋˜๋Š” 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2,6-diamino-4-nitrotoluene, 2,4-diamino-6-nitrotoluene์€ AccuStandard์—์„œ ๊ตฌ๋งคํ•˜์˜€๋‹ค. TNT์˜ ์ค‘๊ฐ„ ๋ถ„ํ•ด์‚ฐ๋ฌผ ์ถ”์ถœ์„ ์œ„ํ•˜์—ฌ solid phase micro-extraction fiber assembly(SPME, 50/30 ฮผm Divinylbenzene /Carboxen /Polydimethylsiloxane fibers)๋Š” Supelco์‚ฌ๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•˜์˜€๋‹ค. ํ•„ํ„ฐ๋ง์„ ์œ„ํ•œ Econofltr ์ฃผ์‚ฌ๊ธฐ ํ•„ํ„ฐ, PTFE 47 mm filter paper๋Š” ๊ฐ๊ฐ agilent technology์™€ Grace์‚ฌ๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•˜์˜€๋‹ค. ํฌ๋ฆ„์‚ฐ(formic acid, โ‰ฅ 95%), n-ํ—ฅ์‚ฐ(hexane), ์ˆ˜์‚ฐํ™”๋‚˜ํŠธ๋ฅจ(NaOH), ๋ฉ”ํƒ„์˜ฌ์€ SigmaAldrich๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•˜์˜€๊ณ , ๋ธŒ๋กฌํ™”์นผ๋ฅจ(KBr)์€ MERCK๋กœ๋ถ€ ํ„ฐ ๊ตฌ๋งคํ•˜์˜€๋‹ค. ์ธ๊ณต์ง€ํ•˜์ˆ˜ ์กฐ์„ฑ์„ ์œ„ํ•ด ์‚ฌ์šฉ๋œ ์—ผํ™”๋งˆ๊ทธ๋„ค์Š˜(MgCl2)์€ Junsei Chemical์—์„œ, ์งˆ์‚ฐ๋‚˜ํŠธ๋ฅจ(NaNO3)๊ณผ ํ™ฉ์‚ฐ์นผ์Š˜์ด์ˆ˜ํ™”๋ฌผ(CaSO4ยท2H2O)์€ ์‚ผ์ „์ˆœ์•ฝ์—์„œ ๊ฐ๊ฐ ๊ตฌ๋งคํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋ชจ๋“  ์šฉ์•ก์ œ์กฐ ๋ฐ ์‹คํ—˜์—์„œ๋Š” Barnstead Nanopure(Thermo Scientific)์— ์˜ํ•ด ์ œ์กฐ๋œ ์ดˆ์ˆœ์ˆ˜(>18 Mฮฉยทcm)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์‹คํ—˜์— ์‚ฌ์šฉ๋œ ์งˆ์†Œ์™€ ํ—ฌ๋ฅจ๊ฐ€์Šค๋Š” ํ•œ๋ฏธ๊ฐ€์Šคํ…Œํฌ๋กœ๋ถ€ํ„ฐ ๊ตฌ๋งคํ•˜์˜€๋‹ค.

2.2. ์‹œ๋ฃŒ์˜ ์ค€๋น„

TNT ์šฉ์•ก(50 mg/L)์€ TNT ๊ฒฐ์ •์„ ์ดˆ์ˆœ์ˆ˜์— ๋„ฃ๊ณ  24์‹œ๊ฐ„ ๋™์•ˆ ์ž์„๊ต๋ฐ˜๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ต๋ฐ˜ ํ›„ 0.45 ฮผm ํ•„ํ„ฐ(PTFE, 47 mm, Grace)๋ฅผ ํ†ต๊ณผ์‹œ์ผœ ์ค€๋น„ํ•˜์˜€๋‹ค. Ro et al. (1996)๋Š” TNT์˜ ์šฉํ•ด๋„๊ฐ€ 20โ„ƒ์—์„œ ์ผ๋ฐ˜์ ์œผ๋กœ ์•Œ๋ ค์ง„ 100~200 mg/L์— ๋ฏธ์น˜์ง€ ๋ชปํ•˜๊ณ , 86~97 mg/L์˜ ๋ถ„ํฌ๋ฅผ ๋ณด์ธ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ์ €์˜จ ์‹คํ—˜(์˜ˆ: 4โ„ƒ)์˜ ๊ฒฝ์šฐ ์˜จ๋„ ์ €ํ•˜์— ๋”ฐ๋ผ TNT ์šฉํ•ด๋„๊ฐ€ ๊ฐ์†Œํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์šฉ์•ก ์ œ์กฐ ํ›„ 0.45 ฮผm๋กœ ํ•„ํ„ฐ๋ง ํ›„ ์‹คํ—˜์— ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋™์ผํ•œ ์‹คํ—˜ ์กฐ๊ฑด ์กฐ์„ฑ์„ ์œ„ํ•ด ๋ชจ๋“  TNT ์šฉ์•ก์€ ์ œ์กฐ ํ›„ ํ•„ํ„ฐ๋ง ํ›„ ์‹คํ—˜์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ํ•„ํ„ฐ๋ง ํ•œ TNT ์šฉ์•ก์€ ๊ฐˆ์ƒ‰๋ณ‘์— ๋„ฃ๊ณ  ์‹คํ—˜์— ์ ํ•ฉํ•œ ์˜จ๋„์— ๋ณด๊ด€ํ•˜์˜€๋‹ค. ์ธ๊ณต์ง€ํ•˜์ˆ˜๋Š” ์ดˆ์ˆœ์ˆ˜์— 0.09 mM MgCl2, 0.2 mM NaNO3, 0.2 mM CaSO4ยท2H2O๋ฅผ ํ˜ผํ•ฉํ•˜์—ฌ ์กฐ์„ฑํ•˜์˜€๊ณ , ๋™์ผํ•œ ๊ณผ์ •์œผ๋กœ ํ•„ํ„ฐ๋ง ๋ฐ ๋ณด๊ด€ํ•˜์˜€๋‹ค.

2.3. ์‹œ๋ฃŒ์˜ ์ฒ˜๋ฆฌ ๋ฐ ๋ถ„์„

TNT์˜ ๋ถ„ํ•ด ์‹คํ—˜์€ ํšŒ๋ถ„์‹ ๋ฐ˜์‘๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‹ค์‹œํ•˜์˜€๋‹ค. TNT ์šฉ์•ก 300 ml๊ฐ€ ๋“  400 ml ๋น„์ด์ปค์— Pd-Al ์ด‰๋งค๋ฅผ ๋„ฃ๊ณ  magnetic stir bar์™€ plate (PC-420, Corning)๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ท ์งˆํ•˜๊ฒŒ ํ˜ผํ•ฉํ•˜์˜€๋‹ค. TNT ์˜ค์—ผ ์‹œ๋ฃŒ์— ์ˆ˜์†Œ ๊ณต๊ธ‰์›์ธ ํฌ๋ฆ„์‚ฐ์„ ์ถ”๊ฐ€ํ•˜๊ธฐ ์ „์— ์ดˆ๊ธฐ ๋†๋„ ์ธก์ •์„ ์œ„ํ•œ ์‹œ๋ฃŒ๋ฅผ ์ฑ„์ทจํ•˜์˜€๋‹ค. ์ดํ›„ ์‹คํ—˜ ๋ชฉ์ ์— ๋งž๊ฒŒ ํฌ๋ฆ„์‚ฐ ๋†๋„(80 mg/L, 190 mg/L, 390 mg/L)๋ฅผ ์กฐ์„ฑํ•œ ํ›„ ๋ฐ˜์‘์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์‹คํ—˜ ๋ชฉ์ ์— ๋งž๋Š” ์˜จ๋„(4โ„ƒ, 20โ„ƒ, 30โ„ƒ)๋Š” ํšŒ๋ถ„์‹ ๋ฐ˜์‘๊ธฐ ์•„๋ž˜์— ์ˆ˜์กฐ๋ฅผ ์ค€๋น„ํ•œ ํ›„ hot plate (PC-420, Corning)๋ฅผ ์ด์šฉํ•˜์—ฌ ์ˆ˜์กฐ๋ฅผ ์ผ์ •ํ•œ ์˜จ๋„๋กœ ์œ ์ง€ํ•˜์˜€๋‹ค. ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ์‹คํ—˜์€ 2ํšŒ ์‹ค์‹œํ•˜์˜€์œผ๋ฉฐ ๊ฐ ์‹คํ—˜์˜ ํ‰๊ท ๊ฐ’์„ ๋ถ„์„ํ•˜์˜€๋‹ค.

์šฉ์•ก ์† TNT์˜ ๋ถ„ํ•ด๋ฅผ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ˜์‘์‹œ๊ฐ„ ๋™์•ˆ 2 ml์˜ ์‹œ๋ฃŒ๋ฅผ 5 ml plastic syringe (NORM-JECT)๋ฅผ ์ด์šฉํ•˜์—ฌ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ(2~5๋ถ„)์œผ๋กœ ์ฑ„์ทจํ•˜๊ณ  0.45 ฮผm pore size syringe ํ•„ํ„ฐ(Econofltr PVDF, Agilent Technologies)๋กœ ์—ฌ๊ณผํ•œ ํ›„ ์‹œ๋ฃŒ๋ฅผ HPLC (High Performance Liquid Chromatography, Agilent technologies 1200 series)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„์šฉ ์นผ๋Ÿผ์€ ZORBAX Eclipse Plus C18 (4.6ร—250 mm, 5 ฮผm, Agilent technologies)์„ ์‚ฌ์šฉํ•˜์˜€๊ณ , ์šด๋ฐ˜์šฉ๋งค๋Š” ๋ฉ”ํƒ„์˜ฌ๊ณผ ์ฆ๋ฅ˜์ˆ˜๋ฅผ 50:50์œผ๋กœ ํ˜ผํ•ฉํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ด๋•Œ ์šด๋ฐ˜์šฉ๋งค์˜ ์œ ์†์€ 1 ml/min์ด์—ˆ๋‹ค. ์‹œ๋ฃŒ๋Š” autosampler์šฉ syringe๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 10 ยตL ์ฃผ์ž…ํ•˜์˜€์œผ๋ฉฐ, TNT์™€ ๋ถ„ํ•ด์‚ฐ๋ฌผ ๊ฒ€์ถœ์€ photo-diode array detector๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 254 nm ํŒŒ์žฅ์—์„œ ์ด๋ฃจ์–ด์กŒ๋‹ค. TNT์˜ ์ค‘๊ฐ„ ๋ถ„ํ•ด์‚ฐ๋ฌผ๋กœ ์˜ˆ์ƒ๋˜๋Š” 2-amino-4,6-dinitrotoluene (or 4-amino-2,6-dinitrotoluene), 2,6-diamino-4-nitrotoluene (or 2,4-diamino-6- nitrotoluene) ํ‘œ์ค€์•ก์„ HPLC๋กœ ๋ถ„์„ํ•˜์—ฌ ๋ฐ˜์‘๋„์ค‘ ๊ฒ€์ถœ๋˜๋Š” ์ค‘๊ฐ„ ๋ถ„ํ•ด์‚ฐ๋ฌผ์˜ ํฌ๋กœ๋งˆํ† ๊ทธ๋ž˜ํ”ผ ์ƒ์˜ ์ฒด๋ฅ˜์‹œ๊ฐ„๊ณผ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค.

๋˜ํ•œ, ๋ฐ˜์‘๊ณผ์ •์˜ ์ค‘๊ฐ„ ๋ถ„ํ•ด์‚ฐ๋ฌผ ํ™•์ธ์€ gas chromatography and mass spectrometer(GC/MS, Agilent technologies 7890A)๋ฅผ ์ด์šฉํ•˜์˜€๊ณ  ์ด๋•Œ 5975C ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ค‘๊ฐ„ ๋ถ„ํ•ด์‚ฐ๋ฌผ์€ SPME๋ฅผ ์ด์šฉํ•˜์—ฌ 10๋ถ„ ๋™์•ˆ ์ถ”์ถœํ•˜์˜€๊ณ , GC/MS์— splitless mode๋กœ ์ฃผ์ž…ํ•˜์˜€์œผ๋ฉฐ, ์šด๋ฐ˜๊ธฐ์ฒด๋Š” ํ—ฌ๋ฅจ 1 ml/min ์ด์—ˆ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉํ•œ ์นผ๋Ÿผ์€ DB-5MS (0.32 mmร—30 m, 0.25 ฮผm film thickness)์ด๊ณ , ์นผ๋Ÿผ ์˜ค๋ธ ์˜จ๋„๋Š” ์ดˆ๊ธฐ 40โ„ƒ์—์„œ 200โ„ƒ๊นŒ์ง€ 8โ„ƒ/min ๋น„์œจ๋กœ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ์ดํ›„ 300โ„ƒ๊นŒ์ง€ 20โ„ƒ/min ๋น„์œจ๋กœ ์ฆ๊ฐ€ํ•œ ํ›„ 5๋ถ„๊ฐ„ ์œ ์ง€ํ•˜์˜€๋‹ค.

๋ฐ˜์‘ ์ „๊ณผ ํ›„ ๊ณ ํ˜•๋ฌผ์˜ ์ž‘์šฉ๊ธฐ ๋ถ„์„์€ Universal ATR sampling accessory๋ฅผ ๋ถ€์ฐฉํ•œ Fourier Transform Infrared Spectrometer(FT-IR, PerkinElmer)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ ˆ๊ตฌ์™€ ์‚ฌ๋ฐœ์„ ์‚ฌ์šฉํ•˜์—ฌ ์•ฝ 5 mg์˜ ๊ณ ํ˜•๋ฌผ๊ณผ 400 mg์˜ ๋ธŒ๋กฌํ™”์นผ๋ฅจ(KBr)์„ ๊ฐ๊ฐ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ๊ฐ„ ํ›„, ๊ท ์ผํ•˜๊ฒŒ ํ˜ผํ•ฉํ•˜๊ณ  ์žฅ์น˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ŠคํŽ™ํŠธ๋Ÿผ์€ 4000 cmโˆ’1๋ถ€ํ„ฐ 400 cmโˆ’1๊นŒ์ง€ ๊ตฌ๊ฐ„์„ 4 cmโˆ’1 ํ•ด์ƒ๋„๋กœ 500ํšŒ ์Šค์บ”ํ•˜์—ฌ ํš๋“ํ•˜์˜€๋‹ค.

3. Results and Discussion

3.1. TNT์˜ ๋ถ„ํ•ด ํŠน์„ฑ

TNT ๋ถ„ํ•ด ๊ณผ์ • ๋ฐ ๊ฒฐ๊ณผ๋ฌผ์— ๋Œ€ํ•œ HPLC ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ, GC/MS ํฌ๋กœ๋งˆํ† ๊ทธ๋žจ, ๊ทธ๋ฆฌ๊ณ  ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ ์ ์™ธ์„  ๋ถ„๊ด‘๋ถ„์„ ์Šคํ…ํŠธ๋Ÿผ์€ Fig. 1๊ณผ ๊ฐ™๋‹ค. ๋ฐ˜์‘์ด ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ์ดˆ๊ธฐ TNT ๋†๋„๊ฐ€ ์ ์ฐจ ๊ฐ์†Œํ•˜๋ฉด์„œ ๋ถ„ํ•ด์‚ฐ๋ฌผ๋“ค์ด ๋งŒ๋“ค์–ด์ง„๋‹ค(Fig. 1(a)). ๋ถ„ํ•ด์‚ฐ๋ฌผ๋กœ ์˜ˆ์ƒ๋˜๋Š” ํ‘œ์ค€๋ฌผ์งˆ์„ ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ HPLC๋กœ ๋ถ„์„ํ•˜๊ณ  ํ”ผํฌ๊ฐ€ ๋‚˜์˜ค๋Š” ์ฒด๋ฅ˜์‹œ๊ฐ„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ dinitrotoluene๊ณผ nitrotoluene์ด ์ƒ์„ฑ๋จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. HPLC ๋ถ„์„๊ฒฐ๊ณผ TNT๋Š” 6.7๋ถ„, 2-amino-4,6-dinitrotoluene์™€ 4-amino-2,6-dinitrotoluene์€ 6.3๋ถ„, ๊ทธ๋ฆฌ๊ณ  2,6-diamino-4-nitrotoluene์™€ 2,4-diamino-6-nitrotoluene์€ 2.1๋ถ„์— ๊ฐ๊ฐ ํ”ผํฌ๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. TNT๋Š” ํ™˜์› ๋ถ„ํ•ด ๊ณผ์ •์„ ํ†ตํ•ด nitro๊ธฐ๊ฐ€ amino๊ธฐ๋กœ ์น˜ํ™˜๋˜๋ฉด์„œ ์—ฐ์†์ ์œผ๋กœ 2-amino4,6-dinitrotoluene (or 4-amino-2,6-dinitrotoluene)์œผ๋กœ ๋ถ„ํ•ด๋œ ํ›„ diaminonitrotoluene์„ ๊ฑฐ์ณ triaminotoluene์œผ๋กœ ์ „ํ™˜๋˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค(Elovitz and Weber, 1999). ์•„๋ฏผ๊ธฐ๋ฅผ ๋ณด์œ ํ•œ ๋ฐฉํ–ฅ์กฑ ํ™”ํ•ฉ๋ฌผ์€ ์—ฌ์ „ํžˆ ๋…์„ฑ์„ ๋‚˜ํƒ€๋‚ด์ง€๋งŒ TNT์™€ ๋น„๊ตํ•  ๋•Œ ์‰ฝ๊ฒŒ ์ƒ๋ถ„ํ•ด๋œ๋‹ค(Hundal et al., 1997).

Fig. 1.

(a) HPLC chromatogram, (b) GC/MS chromatogram, and (c) the Fourier transform infrared spectra of trinitrotoluene (TNT) and its by-products on the degradation of TNT by Pd-Al catalyst and formic acid.

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f001.jpg

Pd-Al ์ด‰๋งค์™€ ์ˆ˜์†Œ ๊ณต๊ธ‰์›์œผ๋กœ์„œ ํฌ๋ฆ„์‚ฐ์„ ํ™œ์šฉํ•œ TNT ๋ถ„ํ•ด ๋ฐ˜์‘์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ถ„ํ•ด์‚ฐ๋ฌผ์€ HPLC ํ”ผํฌ ๋ณ€ํ™” ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฐ˜์‘ ์ค‘ ์‹œ๋ฃŒ๋ฅผ SPME๋กœ ์ฑ„์ทจํ•œ ํ›„ GC/MS ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 1(b)). ๋ฐ˜์‘ ์ค‘ ์ƒ์„ฑ๋˜๋Š” ๋ถ„ํ•ด์‚ฐ๋ฌผ์€ HPLC์—์„œ ๊ด€์ฐฐํ•œ 2-amino-4,6-dinitrotoluene ์™ธ์—๋„ 2-amino-5-methylbenzoicacid์™€ hexamethylcyclotrisiloxane์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ triaminotoluene์€ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค. ๋˜ํ•œ ๋ฐ˜์‘์ด ์™„๋ฃŒ๋  ์‹œ์ ์—๋„ ํฌ๋ฆ„์‚ฐ์ด ๊ฒ€์ถœ๋˜์–ด ํ™˜์› ๋ฐ˜์‘์„ ์œ„ํ•œ ์ˆ˜์†Œ๋Š” ์ถฉ๋ถ„ํžˆ ๊ณต๊ธ‰๋˜๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. TNT ๋ถ„ํ•ด๋ฐ˜์‘ ์ข…๋ฃŒ ํ›„์—๋Š” TNT ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ถ„ํ•ด์‚ฐ๋ฌผ์ธ 2-amino-4,6-dinitrotoluene๋„ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•„ ๋ถ„ํ•ด๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.

๋˜ํ•œ TNT ๋ถ„ํ•ด๋ฅผ HPLC, GC/MS ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฐ˜์‘์ด ์™„๋ฃŒ๋œ ๊ณ ํ˜•๋ฌผ์— ๋Œ€ํ•œ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ ์ ์™ธ์„ ๋ถ„๊ด‘๋ถ„์„๋ฒ•์„ ํ†ตํ•ด์„œ๋„ ๊ด€์ฐฐํ•˜์˜€๋‹ค(Fig. 1(c)). FTIR spectra์—์„œ TNT๋Š” 1,540 cmโˆ’1 (C-C ring stretch), 1,354 cmโˆ’1 (C-C ring stretch), 908 cmโˆ’1 (C-N ring stretch), 719 cmโˆ’1 (C-C ring bending)์—์„œ ํ”ผํฌ๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค(Banas et al., 2009). ์ˆœ์ˆ˜ํ•œ TNT๋ฅผ FTIR๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ์œ„์—์„œ ๊ธฐ์ˆ ํ•œ ํ”ผํฌ๋ฅผ ๋ชจ๋‘ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋‚˜, ์‹คํ—˜ ํ›„ ์ฑ„์ทจํ•œ ๊ณ ํ˜•๋ฌผ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ TNT์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋Œ€๋ถ€๋ถ„์˜ ํ”ผํฌ๊ฐ€ ์‚ฌ๋ผ์ ธ, TNT๊ฐ€ ๋ถ„ํ•ด๋˜์—ˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

3.2. ์ด‰๋งค์˜ ์–‘์— ๋”ฐ๋ฅธ TNT์˜ ๋ถ„ํ•ด

TNT์˜ ๋ถ„ํ•ด๋Š” ์œ ์‚ฌ 1์ฐจ ๋ฐ˜์‘์‹์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํˆฌ์ž…๋œ ์ด‰๋งค์˜ ์–‘์— ๋”ฐ๋ผ ๋ณด์ •ํ•˜์—ฌ ํ‘œ์ค€ํ™”(normalized)ํ•œ ์†๋„์ƒ์ˆ˜๋กœ ๋‚˜ํƒ€๋‚ด๊ณ  ๋น„๊ตํ•˜์˜€๋‹ค. Pd-Al ์ด‰๋งค๋Š” 5%์˜ Pd์„ ํฌํ•จํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ, ์‹ค์ œ Pd ์–‘์— ์˜ํ•œ ๋ถ„ํ•ด ์ƒ์ˆ˜๋Š” ์ด‰๋งค์˜ ์–‘์— ์˜ํ•œ ๋ถ„ํ•ด ์ƒ์ˆ˜๋ณด๋‹ค 20๋ฐฐ ํฌ๋‹ค. ํšŒ๋ถ„์‹ ๋ฐ˜์‘์กฐ์— ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ์ด‰๋งค์˜ ์–‘์„ ๋‹ฌ๋ฆฌํ•˜๋ฉด์„œ ํ™˜์›์†๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 2). TNT์˜ ๋†๋„ ์ €๊ฐ ์†๋„๋Š” ํˆฌ์ž…๋˜๋Š” ์ด‰๋งค์˜ ์–‘๊ณผ ๋น„๋ก€ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ด‰๋งค์˜ ์–‘์ด ์ฆ๊ฐ€ํ•จ(10 mg, 20 mg, 40 mg)์— ๋”ฐ๋ผ 1์ฐจ ๋ถ„ํ•ด์ƒ์ˆ˜๋Š” ๊ฐ๊ฐ 0.05, 0.17, 0.47 minโˆ’1 ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๊ณ , ์ด‰๋งค์˜ ๋‹จ์œ„ ์งˆ๋Ÿ‰ ๋‹น ๋ถ„ํ•ด์ƒ์ˆ˜๋Š” 4.74, 8.37, 10.93 minโˆ’1gโˆ’1 ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ 40 mg์˜ ์ด‰๋งค๋ฅผ ์‚ฌ์šฉํ•œ ๊ฒฝ์šฐ 50 mg/L TNT ์šฉ์•ก 300 ml๋ฅผ 8๋ถ„ ์•ˆ์— ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

Fig. 2.

The effects of amount of Pd-Al catalyst (10 mg, 20 mg, 40 mg) on the degradation of trinitrotoluene (TNT, initial concentration (C0 = 50 mg/L) in the presence of formic acid (390 mg/L).

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f002.jpg

3.3. ์ดˆ๊ธฐ TNT ๋†๋„์— ๋”ฐ๋ฅธ TNT์˜ ๋ถ„ํ•ด

ํšŒ๋ถ„์‹ ๋ฐ˜์‘์กฐ ์‹คํ—˜์˜ ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ์ดˆ๊ธฐ TNT ๋†๋„๋ฅผ ๋‹ฌ๋ฆฌํ•˜๋ฉด์„œ ํ™˜์›์†๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 3). TNT์˜ ๋†๋„ ์ €๊ฐ ์†๋„๋Š” ์ดˆ๊ธฐ TNT ๋†๋„์™€ ๋ฐ˜๋น„๋ก€ํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ๋†๋„๊ฐ€ 50 mg/L์—์„œ 30 mg/L, 10 mg/L๋กœ ๋‚ฎ์•„์ง์— ๋”ฐ๋ผ ๋ฐ˜์‘์ƒ์ˆ˜๋Š” 8.37, 22.56, 23.11 minโˆ’1gโˆ’1๋กœ ๊ฐ๊ฐ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ดˆ๊ธฐ TNT ๋†๋„๊ฐ€ ๋‚ฎ์œผ๋ฉด ๋น ๋ฅธ ์‹œ๊ฐ„ ๋‚ด์— ๋ถ„ํ•ด๊ฐ€ ์™„๋ฃŒ๋˜์—ˆ์œผ๋ฉฐ, ์ด ๊ฒฐ๊ณผ๋Š” ๊ฐ๋งˆ์„  ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด TNT๋ฅผ ๋ถ„ํ•ดํ•œ Lee and Lee (2005) ์—ฐ๊ตฌ ๋“ฑ๊ณผ ์œ ์‚ฌํ•˜์˜€๋‹ค.

Fig. 3.

The effects of initial concentrations (10 mg/L, 30 mg/L, 50 mg/L) of trinitrotoluene on the degradation of TNT by Pd-Al catalyst (20 mg) with formic acid (390 mg/L).

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f003.jpg

3.4. ์˜จ๋„์— ๋”ฐ๋ฅธ TNT์˜ ๋ถ„ํ•ด

ํšŒ๋ถ„์‹ ๋ฐ˜์‘์กฐ ์‹คํ—˜์˜ ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ๋ฐ˜์‘ ์˜จ๋„๋ฅผ ๋‹ฌ๋ฆฌํ•˜๋ฉด์„œ ํ™˜์›์†๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 4). TNT์˜ ๋†๋„ ์ €๊ฐ ์†๋„๋Š” ์˜จ๋„๊ฐ€ ์ฆ๊ฐ€์— ๋น„๋ก€ํ•˜์˜€๋‹ค. ๋ฐ˜์‘ ์˜จ๋„๊ฐ€ 4โ„ƒ, 20โ„ƒ, 30โ„ƒ๋กœ ๋†’์•„์ง์— ๋”ฐ๋ผ ๋ฐ˜์‘์ƒ์ˆ˜๋Š” 1.40, 8.37, 11.16 minโˆ’1gโˆ’1๋กœ ๊ฐ๊ฐ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ TNT์˜ ์‹ ์†ํ•œ ๋ถ„ํ•ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ƒ์˜จ๋ณด๋‹ค ๋†’์€ ์˜จ๋„ ์„ค์ •์ด ์š”๊ตฌ๋œ๋‹ค. ์˜จ๋„ ์ƒ์Šน์— ๋”ฐ๋ฅธ TNT ๋ถ„ํ•ด ์†๋„ ์ฆ๊ฐ€๋Š” ํ™•์‚ฐ ์†๋„์˜ ์ฆ๊ฐ€, TNT์˜ ์šฉํ•ด๋„ ์ฆ๊ฐ€, ๊ทธ๋ฆฌ๊ณ  ๋ฐ˜์‘์†๋„ ์ฆ๊ฐ€์— ๊ธฐ์ธํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค(Hundal et al., 1997).

Fig. 4.

The effects of temperature (4โ„ƒ, 20โ„ƒ, 30โ„ƒ) on the degradation of TNT by Pd-Al catalyst (20 mg) with formic acid (390 mg/L).

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f004.jpg

3.5. ํฌ๋ฆ„์‚ฐ์˜ ๋†๋„์— ๋”ฐ๋ฅธ TNT์˜ ๋ถ„ํ•ด

ํšŒ๋ถ„์‹ ๋ฐ˜์‘์กฐ ์‹คํ—˜์˜ ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ํฌ๋ฆ„์‚ฐ์˜ ๋†๋„๋ฅผ ๋‹ฌ๋ฆฌํ•˜๋ฉด์„œ ํ™˜์›์†๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 5). ์‹คํ—˜์—์„œ ํฌ๋ฆ„์‚ฐ์„ ์ถ”๊ฐ€ํ•˜์ง€ ์•Š์•˜์„ ๋•Œ TNT๋Š” Pd-Al ์ด‰๋งค์˜ ์–‘์— ๊ด€๊ณ„์—†์ด ๋ถ„ํ•ด๋˜์ง€ ์•Š์•˜๋‹ค. ๋˜ํ•œ Pd-Al ์ด‰๋งค์—†์ด ํฌ๋ฆ„์‚ฐ์„ ์ถ”๊ฐ€ํ•˜์—ฌ๋„ ์–‘์— ๊ด€๊ณ„์—†์ด TNT๋Š” ๋ถ„ํ•ด๋˜์ง€ ์•Š์•˜๋‹ค. Pd-Al ์ด‰๋งค๋ฅผ ํˆฌ์—ฌํ•œ TNT ์šฉ์•ก์—์„œ TNT์˜ ๋†๋„ ์ €๊ฐ์†๋„๋Š” ํฌ๋ฆ„์‚ฐ์˜ ๋†๋„์— ๋น„๋ก€ํ•˜์˜€๋‹ค. ํฌ๋ฆ„์‚ฐ์˜ ๋†๋„๊ฐ€ 80 mg/L, 190 mg/L, 390 mg/L๋กœ ์ฆ๊ฐ€๋จ์— ๋”ฐ๋ผ ๋ฐ˜์‘์ƒ์ˆ˜๋Š” 3.32, 6.57, 8.37 minโˆ’1gโˆ’1๋กœ ๊ฐ๊ฐ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ถฉ๋ถ„ํ•˜์ง€ ๋ชปํ•œ ํฌ๋ฆ„์‚ฐ์˜ ๊ณต๊ธ‰์€ TNT์˜ ๋ถ„ํ•ด์†๋„๋ฅผ ์ €ํ•˜์‹œํ‚ค๋Š” ์›์ธ์ด ๋  ์ˆ˜ ์žˆ๋‹ค.

Fig. 5.

The effects of the concentration of formic acid (80 mg/L, 190 mg/L, 390 mg/L) on the degradation of TNT by Pd-Al catalyst (20 mg).

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f005.jpg

3.6. pH์— ๋”ฐ๋ฅธ TNT์˜ ๋ถ„ํ•ด

ํšŒ๋ถ„์‹ ๋ฐ˜์‘์กฐ ์‹คํ—˜์˜ ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ pH๋ฅผ ๋‹ฌ๋ฆฌํ•˜๋ฉด์„œ ํ™˜์›์†๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 6). TNT์˜ ๋†๋„ ์ €๊ฐ ์†๋„๋Š” pH๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜์˜€๊ณ , pH๊ฐ€ 5๋ณด๋‹ค ํฐ ๊ฒฝ์šฐ ๊ฑฐ์˜ ๋ฐ˜์‘์ด ์ผ์–ด๋‚˜์ง€ ์•Š์•˜๋‹ค. pH๊ฐ€ 3, 5, 10์œผ๋กœ ์ฆ๊ฐ€๋จ์— ๋”ฐ๋ผ ๋ฐ˜์‘์ƒ์ˆ˜๋Š” 8.37, 0.06, 0.06 minโˆ’1gโˆ’1๋กœ ๊ฐ๊ฐ ๊ฐ์†Œํ•˜์˜€๋‹ค. TNT๋Š” ์ˆ˜์†Œ์— ์˜ํ•ด ํ™˜์›๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ˆ˜์†Œ ์ด์˜จ ๋†๋„๊ฐ€ ๋‚ฎ์€ ๋†’์€ pH์—์„œ๋Š” TNT์˜ ๋ถ„ํ•ด๊ฐ€ ๊ฑฐ์˜ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์•˜๋‹ค. ๋ฐ˜์‘ ํ›„ ๊ฐ ์‹œ๋ฃŒ์˜ pH๋Š” 3, 6, 10์œผ๋กœ ๊ฑฐ์˜ ๋ณ€ํ™”๊ฐ€ ์—†์—ˆ๊ณ , ๋†’์€ pH์—์„œ ์ถ”๊ฐ€๋˜๋Š” ํฌ๋ฆ„์‚ฐ์€ TNT ํ™˜์›์—๋Š” ์‚ฌ์šฉ๋˜์ง€ ๋ชปํ•˜๊ณ  OH ์ด์˜จ๊ณผ ๋ฐ˜์‘ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ํ•œํŽธ, Lee and Lee (2005)์˜ ๊ฐ๋งˆ์„  ์กฐ์‚ฌ๋ฅผ ํ†ตํ•œ TNT ๋ถ„ํ•ด ์‹œ๋Š” pH 13์—์„œ ๋ถ„ํ•ด ํšจ์œจ์ด ๊ฐ€์žฅ ๋†’์•„ ๋ถ„ํ•ด ๋ฉ”์นด๋‹ˆ์ฆ˜์— ๋”ฐ๋ผ ๋ฐ˜์‘์— ์šฉ์ดํ•œ pH๋Š” ์„œ๋กœ ๋‹ค๋ฆ„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

Fig. 6.

The effects of pH (3, 5, 10) on the degradation of TNT by Pd-Al catalyst (20 mg) with formic acid (390 mg/L).

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f006.jpg

3.7. ์ด์˜จ์˜ ์–‘์— ๋”ฐ๋ฅธ TNT์˜ ๋ถ„ํ•ด

ํšŒ๋ถ„์‹ ๋ฐ˜์‘์กฐ ์‹คํ—˜์˜ ๋™์ผํ•œ ์กฐ๊ฑด์—์„œ ์ธ๊ณต์ง€ํ•˜์ˆ˜๋ฅผ ์กฐ์„ฑํ•˜์—ฌ ํ™˜์›์†๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค(Fig. 7). TNT์˜ ๋†๋„ ์ €๊ฐ ์†๋„๋Š” ์ด์˜จ์˜ ์–‘์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํ˜„์ €ํžˆ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ฆ๋ฅ˜์ˆ˜์™€ ์ธ๊ณต์ง€ํ•˜์ˆ˜๋ฅผ ์ฒ˜๋ฆฌํ•œ TNT ๋ถ„ํ•ด์ƒ์ˆ˜๋Š” 8.37, 0.06 minโˆ’1gโˆ’1๋กœ ๊ฐ๊ฐ ๋‚˜ํƒ€๋‚ฌ๋‹ค. TNT๋Š” ์ˆ˜์†Œ์— ์˜ํ•ด ํ™˜์›๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ถ”๊ฐ€๋œ ํฌ๋ฆ„์‚ฐ์€ ๋‹ค๋ฅธ ์ด์˜จ๊ณผ ๋ฐ˜์‘ํ•˜๊ณ  TNT์˜ ๋ถ„ํ•ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Fig. 7.

The effects of ion concentration (0.09 mM MgCl2, 0.2 mM NaNO3, 0.2 mM CaSO4ยท 2H2O) on the degradation of TNT (C0 = 50 mg/L) by Pd-Al catalyst (20 mg) with formic acid (390 mg/L).

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f007.jpg

์ธ๊ณต์ง€ํ•˜์ˆ˜์˜ TNT ์˜ค์—ผ์„ ์ •ํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ Pd-Al ์ด‰๋งค์˜ ์–‘, ํฌ๋ฆ„์‚ฐ์˜ ๋†๋„, ๊ทธ๋ฆฌ๊ณ  ๋ฐ˜์‘ ์‹œ๊ฐ„์„ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค(Fig. 8). ์ธ๊ณต์ง€ํ•˜์ˆ˜์˜ TNT ๋ถ„ํ•ด๋Š” ์ฆ๋ฅ˜์ˆ˜ ์†์˜ TNT ๋ถ„ํ•ด์™€ ๋‹ฌ๋ฆฌ ์ฆ‰๊ฐ์ ์ธ ๋ถ„ํ•ด๊ฐ€ ์ผ์–ด๋‚˜์ง€ ์•Š๊ณ  ๋ถ„ํ•ด๋ฅผ ์œ„ํ•œ ์ง€์—ฐ๊ธฐ๊ฐ„์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด‰๋งค์˜ ์–‘์ด ์ ์„์ˆ˜๋ก ์ง€์—ฐ๊ตฌ๊ฐ„์€ ์ฆ๊ฐ€ํ•˜์—ฌ 200 mg์˜ ์ด‰๋งค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ˜์‘ ์‹œ ์•ฝ 5๋ถ„ ์ •๋„์˜ ์ง€์—ฐ ๊ธฐ๊ฐ„์ด ๋‚˜ํƒ€๋‚ฌ์ง€๋งŒ, 50 mg์˜ ์ด‰๋งค ์‚ฌ์šฉ ์‹œ ์•ฝ 10๋ถ„ ์ •๋„์˜ ์ง€์—ฐ๊ธฐ๊ฐ„์ด ๋‚˜ํƒ€๋‚œ ํ›„ ๋ถ„ํ•ด๋˜์—ˆ๋‹ค. ๋ฌผ์†์˜ ์ด์˜จ๋“ค์ด ์ด‰๋งค์— ํก์ฐฉ๋œ TNT์™€ ํฌ๋ฆ„์‚ฐ๊ณผ์˜ ๋ฐ˜์‘์„ ์ง€์—ฐ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋ฐ˜์‘ ์ง€์—ฐ์˜ ๊ตฌ์ฒด์ ์ธ ๋ฉ”์นด๋‹ˆ์ฆ˜์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ์š”๊ตฌ๋œ๋‹ค.

Fig. 8.

The effects of amount of Pd-Al catalyst (50 mg, 200 mg) on the degradation of TNT in artificial ground water (0.09 mM MgCl2, 0.2 mM NaNO3, 0.2 mM CaSO4ยท2H2O) with formic acid (8 g/L).

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_f008.jpg

3.8. TNT ๋ถ„ํ•ด ํšจ์œจ

๋‹ค๋ฅธ ์—ฐ๊ตฌ๋“ค๊ณผ TNT ๋ถ„ํ•ด ํšจ์œจ์— ๋Œ€ํ•œ ์ง์ ‘์ ์ธ ๋น„๊ต๋Š” ์‹คํ—˜ ์กฐ๊ฑด์ด ์„œ๋กœ ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์‰ฝ์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ ํ™˜์›๋ฐ˜์‘์„ ์ด์šฉํ•œ TNT ๋ถ„ํ•ด ์ค‘ ์ดˆ๊ธฐ ๋†๋„, ์ด‰๋งค์˜ ์–‘, ์ด์˜จ๋†๋„ ๋“ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋น„๊ตํ•˜๋ฉด Table 1๊ณผ ๊ฐ™๋‹ค.

Table 1.

Comparison of trinitrotoluene (TNT) degradation from the literature with the data of the present paper. - means unknown

../../Resources/kswe/31-5/images/SJBJB8_2015_v31n5_468_t001.jpg

ํ™˜์›์— ์˜ํ•œ TNT ๋ถ„ํ•ด๋Š” ์ˆœ์ˆ˜ํ•œ ๋ฌผ์˜ ๊ฒฝ์šฐ, ์ดˆ๊ธฐ TNT ๋†๋„๊ฐ€ ๋‚ฎ์€ ๊ฒฝ์šฐ ๋น„๊ต์  ๋น ๋ฅธ ์‹œ๊ฐ„์— ๋ถ„ํ•ด๋จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๊ณ , ์˜๊ฐ€์ฒ ๊ณผ ๋น„๊ตํ•˜์—ฌ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‹คํ—˜ํ•œ Pd-Al ์ด‰๋งค์˜ ํšจ๋Šฅ์ด ๋›ฐ์–ด๋‚จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ƒ๋Œ€์ ์œผ๋กœ Pd-Al ์ด‰๋งค ๊ฐ€๊ฒฉ์ด ์˜๊ฐ€์ฒ ๊ณผ ๋น„๊ตํ•˜์—ฌ ๋น„์‹ธ๊ธฐ ๋•Œ๋ฌธ์— ํšจ์œจ์ ์œผ๋กœ ์žฌ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์•ˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ ์ง€ํ•˜์ˆ˜์˜ ๊ฒฝ์šฐ ๋งŽ์€ ์ด์˜จ๋“ค์ด ๊ณต์กดํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— Pd-Al ์ด‰๋งค์˜ ํšจ๋Šฅ์ด ์ €ํ•˜๋˜๋Š”๋ฐ, ์ด‰๋งค์˜ ํ™œ์„ฑ๋„๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋„ ์š”๊ตฌ๋œ๋‹ค.

4. Conclusion

TNT๋Š” ๊ตฐ ์‚ฌ๊ฒฉ์žฅ, ํ›ˆ๋ จ์žฅ, ์‚ฌ์—…ํ˜„์žฅ์—์„œ ํ•„์š”์— ์˜ํ•ด ์‚ฌ์šฉ๋˜๋ฉฐ, ์‚ฌ์šฉ ํ›„ ์ •ํ™”๋ฅผ ํ†ตํ•˜์—ฌ ์ฃผ๋ณ€ ์ž์—ฐํ™˜๊ฒฝ ๋ฐ ์ธ๊ฐ„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Pd-Al ์ด‰๋งค์™€ ํฌ๋ฆ„์‚ฐ์„ ํ™˜์› ๋ฐ˜์‘์„ ์œ„ํ•œ ์ˆ˜์†Œ๊ณต๊ธ‰์›์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ์šฉ์•ก ์†์˜ TNT๋ฅผ ์ƒ์˜จ์—์„œ ๋ถ„ํ•ดํ•˜์˜€๋‹ค. ๋ณธ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ Pd-Al ์ด‰๋งค์™€ ํฌ๋ฆ„์‚ฐ์„ ํ™œ์šฉํ•œ ์•ก์ƒ์˜ TNT ๋ถ„ํ•ด ์‹œ TNT์˜ ์ดˆ๊ธฐ๋†๋„, pH, ์ด์˜จ๋†๋„๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก, ๊ทธ๋ฆฌ๊ณ  ์˜จ๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ๋ถ„ํ•ด๋Š” ๋น ๋ฅด๊ฒŒ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์•„์šธ๋Ÿฌ Pd-Al ์ด‰๋งค์™€ ํฌ๋ฆ„์‚ฐ์˜ ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก TNT๋Š” ๋น ๋ฅด๊ฒŒ ๋ถ„ํ•ด๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹คํ—˜์—์„œ ํฌ๋ฆ„์‚ฐ์„ ์ถ”๊ฐ€ํ•˜์ง€ ์•Š์•˜์„ ๋•Œ TNT๋Š” Pd-Al ์ด‰๋งค์˜ ์–‘์— ๊ด€๊ณ„์—†์ด ๋ถ„ํ•ด๋˜์ง€ ์•Š์•˜์œผ๋ฉฐ, ๋˜ํ•œ Pd-Al ์ด‰๋งค์—†์ด ํฌ๋ฆ„์‚ฐ์„ ์ถ”๊ฐ€ํ•˜์—ฌ๋„ ์–‘์— ๊ด€๊ณ„์—†์ด TNT๋Š” ๋ถ„ํ•ด๋˜์ง€ ์•Š์•˜๋‹ค.

์‹คํ—˜๊ฒฐ๊ณผ Pd-Al ์ด‰๋งค๋Š” ์ด‰๋งค์˜ ๋‹จ์œ„ ์งˆ๋Ÿ‰๋‹น ๋ถ„ํ•ด์ƒ์ˆ˜๊ฐ€ 8.37 minโˆ’1gโˆ’1 (์‹คํ—˜์กฐ๊ฑด: C0 = 50 mg/L, V = 300 ml, Pd-Al catalyst = 20 mg, HCOOH = 390 mg/L, temperature = 20โ„ƒ, pH = 3)๋กœ์„œ ๊ธฐ์กด์— ๋ฐœํ‘œ๋œ ์˜๊ฐ€์ฒ ์„ ์ด์šฉํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์—ฌ ๋น ๋ฅธ ์‹œ๊ฐ„ ๋‚ด์— TNT๋ฅผ ๋ถ„ํ•ดํ•˜์˜€์œผ๋ฉฐ, ๋ฐ˜์‘๋„์ค‘ ํ™˜์›๋ฐ˜์‘์˜ ๋ถ„ํ•ด์‚ฐ๋ฌผ๋กœ 2,6-diamino-4-nitrotoluene๊ณผ 2-amino-4,6-dinitrotoluene์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๊ณ , ๋ฐ˜์‘ ์™„๋ฃŒ ํ›„ ์ค‘๊ฐ„ ๋ถ„ํ•ด์‚ฐ๋ฌผ๋“ค๋กœ ์™„์ „ํžˆ ๋ถ„ํ•ด๋˜์–ด ๋” ์ด์ƒ ๊ฐ์ง€๋˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ Pd-Al ์ด‰๋งค์™€ ํฌ๋ฆ„์‚ฐ์„ ์ด์šฉํ•˜์—ฌ ์œ ๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์„ ํ™˜์›๋ฐ˜์‘์„ ํ†ตํ•ด ๋น ๋ฅธ ์‹œ๊ฐ„ ๋‚ด์— ๋ถ„ํ•ดํ•˜๋Š” ๊ฒƒ์€ ์ด‰๋ง๋ฐ›๋Š” ์ •ํ™”๊ณต๋ฒ•์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ํ•˜์ง€๋งŒ, ์ธ๊ณต์ง€ํ•˜์ˆ˜์— ์šฉํ•ด๋œ TNT ๋ถ„ํ•ด ์‹œ ํฌ๋ฆ„์‚ฐ ํˆฌ์ž… ํ›„ ์ผ์ •ํ•œ ์‹œ๊ฐ„์ด ๊ฒฝ๊ณผํ•œ ํ›„ ๋ถ„ํ•ด ๋ฐ˜์‘์ด ๋ฐœ์ƒํ•˜๋Š” ์›๋ฆฌ ๋“ฑ์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋˜ํ•œ ์ถ”ํ›„ ์‹ค์ œ ์˜ค์—ผ ์ง€ํ•˜์ˆ˜์—์„œ ์ด‰๋งค์˜ ์„ฑ๋Šฅ, ์ด‰๋งค์˜ ๋น„ํ™œ์„ฑํ™”(poisoning), ์ด‰๋งค์˜ ์œ ์ถœ(leaching) ๋“ฑ์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ์ด์–ด์ ธ์•ผ๊ฒ ๋‹ค.

Acknowledgements

์ด ๋…ผ๋ฌธ์€ 2010๋…„ ์ •๋ถ€(๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€)์˜ ์žฌ์›์œผ๋กœ ํ•œ๊ตญ์—ฐ๊ตฌ์žฌ๋‹จ์˜ ์ง€์›์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋œ ๊ธฐ์ดˆ์—ฐ๊ตฌ์‚ฌ์—…์ž„(2010-0010366). ์‹คํ—˜์ค€๋น„์— ๋„์›€์„ ์ฃผ์‹  ๊น€ํ•ญ๋• ์„ ์ƒ๋‹˜๊ป˜ ๊ฐ์‚ฌ๋“œ๋ฆฌ๋ฉฐ, ์ต๋ช…์˜ ์‹ฌ์‚ฌ์œ„์›๋“ค์—๊ฒŒ๋„ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

References

1 
Ayoub K., Nelieu S., van Hullebusch E. D., Maia-Grondard A., Cassir M., Bermond A., 2011, TNT Oxidation by Fenton Reaction: Reagent Ratio Effect on Kinetics and Early Stage Degradation Pathways, Chemical Engineering Journal, Ayoub, K., Nelieu, S., van Hullebusch, E. D., Maia-Grondard, A., Cassir, M., and Bermond, A. (2011). TNT Oxidation by Fenton Reaction: Reagent Ratio Effect on Kinetics and Early Stage Degradation Pathways, Chemical Engineering Journal, 173, pp. 309-317., Vol. 173, pp. 309-317DOI
2 
Ayoub K., van Hullebusch E., Cassir M., Bermond A., 2010, Application of Advanced Oxidation Processes for TNT Removal: A Review, Journal of Hazardous Materials, Ayoub, K., van Hullebusch, E., Cassir, M., and Bermond, A. (2010). Application of Advanced Oxidation Processes for TNT Removal: A Review, Journal of Hazardous Materials, 178, pp. 10-28., Vol. 178, pp. 10-28DOI
3 
Bae B., 2006, Reduction of High Explosives (HMX, RDX, and TNT) Using Micro- and Nano- Size Zero Valent Iron: Comparison of Kinetic Constants and Intermediates Behavior, Journal of Soil and Groundwater Environment, Bae, B. (2006). Reduction of High Explosives (HMX, RDX, and TNT) Using Micro- and Nano- Size Zero Valent Iron: Comparison of Kinetic Constants and Intermediates Behavior, Journal of Soil and Groundwater Environment, 11, pp. 83-91., Vol. 11, pp. 83-91Google Search
4 
Bae B., Park J., 2014, Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province, Journal of the Korean Geo-Environmental Society, Bae, B., and Park, J. (2014). Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province, Journal of the Korean Geo-Environmental Society, 15, pp. 17-29., Vol. 15, pp. 17-29Google Search
5 
Banas A., Banas K., Bahou M., Moser H., Wen L., Yang P., Li Z., Cholewa M., Lim S., Lim C., 2009, Post-blast Detection of Traces of Explosives by Means of Fourier Transform Infrared Spectroscopy, Vibrational Spectroscopy, Banas, A., Banas, K., Bahou, M., Moser, H., Wen, L., Yang, P., Li, Z., Cholewa, M., Lim, S., and Lim, C. (2009). Post-blast Detection of Traces of Explosives by Means of Fourier Transform Infrared Spectroscopy, Vibrational Spectroscopy, 51, pp. 168-176., Vol. 51, pp. 168-176DOI
6 
Brannon J., Jenkins T., Parker L., Deliman P., Gerald J., Ruiz C., Porter B., Davis W., 2000, Procedures for Determining Integrity of UXO and Explosives Soil Contamination at Firing Ranges, Brannon, J., Jenkins, T., Parker, L., Deliman, P., Gerald, J., Ruiz, C., Porter, B., and Davis, W. (2000). Procedures for Determining Integrity of UXO and Explosives Soil Contamination at Firing Ranges (No. ERDC-TR-00-4), U.S. Army Enigieer Research and Development Center.Google Search
7 
Chen W., Juan C., Wei K., 2005, Mineralization of Dinitrotoluenes and Trinitrotoluene of Spent Acid in Toluene Nitration Process by Fenton Oxidation, Chemosphere, Chen, W., Juan, C., and Wei, K. (2005). Mineralization of Dinitrotoluenes and Trinitrotoluene of Spent Acid in Toluene Nitration Process by Fenton Oxidation, Chemosphere, 60, pp. 1072-1079., Vol. 60, pp. 1072-1079DOI
8 
Chen W., Juan C., Wei K., 2007, Decomposition of Dinitrotoluene Isomers and 2,4,6-trinitrotoluene in Spent Acid from Toluene Nitration Process by Ozonation and Photoozonation, Journal of Hazardous Materials, Chen, W., Juan, C., and Wei, K. (2007). Decomposition of Dinitrotoluene Isomers and 2,4,6-trinitrotoluene in Spent Acid from Toluene Nitration Process by Ozonation and Photoozonation, Journal of Hazardous Materials, 147, pp. 97-104., Vol. 147, pp. 97-104DOI
9 
Cho C., Bae S., Lee W., 2012, Enhanced Degradation of TNT and RDX by Bio-reduced Iron Bearing Soil Minerals, Advances in Environmental Research, Cho, C., Bae, S., and Lee, W. (2012). Enhanced Degradation of TNT and RDX by Bio-reduced Iron Bearing Soil Minerals, Advances in Environmental Research, 1, pp. 1-14., Vol. 1, pp. 1-14DOI
10 
Dillert R., Fornefett I., Siebers U., Bahnemann D., 1996, Photocatalytic Degradation of Trinitrotoluene and Trinitrobenzene: Influence of Hydrogen Peroxide, Journal of Photochemistry and Photobiology A: Chemistry, Dillert, R., Fornefett, I., Siebers, U., and Bahnemann, D. (1996). Photocatalytic Degradation of Trinitrotoluene and Trinitrobenzene: Influence of Hydrogen Peroxide, Journal of Photochemistry and Photobiology A: Chemistry, 94, pp. 231-236., Vol. 94, pp. 231-236DOI
11 
Elovitz M., Weber E., 1999, Sediment-Mediated Reduction of 2,4,6-trinitrotoluene and Fate of the Resulting Aromatic (Poly)amines, Environmental Science & Technology, Elovitz, M. and Weber, E. (1999). Sediment-Mediated Reduction of 2,4,6-trinitrotoluene and Fate of the Resulting Aromatic (Poly)amines, Environmental Science & Technology, 33, pp. 2617-2625., Vol. 33, pp. 2617-2625DOI
12 
Hess T., Lewis T., Crawford R., Katamneni S., Wells J., Watts R., 1998, Combined Photocatalytic and Fungal Treatment for the Destruction of 2,4,6-trinitrotoluene (TNT), Water Research, Hess, T., Lewis, T., Crawford, R., Katamneni, S., Wells, J., and Watts, R. (1998). Combined Photocatalytic and Fungal Treatment for the Destruction of 2,4,6-trinitrotoluene (TNT), Water Research, 32, pp. 1481-1491., Vol. 32, pp. 1481-1491DOI
13 
Hoffmann M., Hua I., Hochemer R., 1996, Application of Ultrasonic Irradiation for the Degradation of Chemical Contaminants in Water, Ultrasonics Sonochemistry, Hoffmann, M., Hua, I., and Hochemer, R. (1996). Application of Ultrasonic Irradiation for the Degradation of Chemical Contaminants in Water, Ultrasonics Sonochemistry, 3, pp. S163-S172., Vol. 3, pp. S163-S172DOI
14 
Hundal L., Singh J., Bier E., Shea P., Comfort S., Powers W., 1997, Removal of TNT and RDX from Water and Soil Using Iron Metal, Environmental Pollution, Hundal, L., Singh, J., Bier, E., Shea, P., Comfort, S., and Powers, W. (1997). Removal of TNT and RDX from Water and Soil Using Iron Metal, Environmental Pollution, 97, pp. 55-64., Vol. 97, pp. 55-64DOI
15 
Jung H., 2004, Removal of 2,4,6-trinitrotoluene by Oxidant Reductant Treatment Process, Masterโ€™s Thesis, Jung, H. (2004). Removal of 2,4,6-trinitrotoluene by Oxidant Reductant Treatment Process, Masterโ€™s Thesis, Kyungpook National University.Google Search
16 
Kalderis D., Juhasz A., Boopathy R., Comfort S., 2011, Soils Contaminated with Explosives: Environmental Fate and Evaluation of State-of-the-art Remediation Processes, Pure and Applied Chemistry, Kalderis, D., Juhasz, A., Boopathy, R., and Comfort, S. (2011). Soils Contaminated with Explosives: Environmental Fate and Evaluation of State-of-the-art Remediation Processes, Pure and Applied Chemistry, 83, pp. 1407-1484., Vol. 83, pp. 1407-1484Google Search
17 
Kim S., Bae B., Chang Y., 2002, A Column Study on Phytoremediation of 2,4,6-trinitrotoluene (TNT) Contaminated Soil, Journal of Korean Society of Environmental Engineers, Kim, S., Back, K., Lee, I., Bae, B., and Chang, Y. (2002). A Column Study on Phytoremediation of 2,4,6-trinitrotoluene (TNT) Contaminated Soil, Journal of Korean Society of Environmental Engineers, 24, pp. 2039-2046., Vol. 24, pp. 2039-2046Google Search
18 
Kwon B., Choi W., Yoon J., 2010, Photo Decomposition Characteristics of 2,4,6-trinitrotoluene in a UV/H2O2 Process, Journal of Korean Society of Water and Wastewater, Kwon, B., Choi, W., and Yoon, J. (2010). Photo Decomposition Characteristics of 2,4,6-trinitrotoluene in a UV/H2O2 Process, Journal of Korean Society of Water and Wastewater, 24, pp. 775-788., Vol. 24, pp. 775-788Google Search
19 
Kwon Y., Kim D., Jeong Y., Bae B., Lee I., Jang Y., 2004, Romoval of 2,4,6-trinitrotoluene(TNT) by Indigenous Grasses, Abutilon Avicennae and Aeschynomene Indica, in Hydroponic Culture, Journal of Korean Society on Water Quality, Kwon, Y., Kim, D., Jeong, Y., Bae, B., Lee, I., and Jang, Y. (2004). Romoval of 2,4,6-trinitrotoluene(TNT) by Indigenous Grasses, Abutilon Avicennae and Aeschynomene Indica, in Hydroponic Culture, Journal of Korean Society on Water Quality, 20, pp. 32-36., Vol. 20, pp. 32-36Google Search
20 
Lee B., Jeong S., 2009, Effects of Additives on 2,4,6-trinitrotoluene (TNT) Removal and Its Mineralization in Aqueous Solution by Gamma Irradiation, Journal of Hazardous Materials, Lee, B., and Jeong, S. (2009). Effects of Additives on 2,4,6-trinitrotoluene (TNT) Removal and Its Mineralization in Aqueous Solution by Gamma Irradiation, Journal of Hazardous Materials, 165, pp. 435-440., Vol. 165, pp. 435-440DOI
21 
Lee B., Lee M., 2005, Decomposition of 2,4,6-trinitrotoluene (TNT) by Gamma Ray Irradiation, Journal of Korean Society of Environmental Engineers, Lee, B. and Lee, M. (2005). Decomposition of 2,4,6-trinitrotoluene (TNT) by Gamma Ray Irradiation, Journal of Korean Society of Environmental Engineers, 27, pp. 1-10., Vol. 27, pp. 1-10Google Search
22 
Li Z., Shea P., Comfort S., 1998, Nitrotoluene Destruction by UV-catalyzed Fenton Oxidation, Chemosphere, Li, Z., Shea, P., and Comfort, S. (1998). Nitrotoluene Destruction by UV-catalyzed Fenton Oxidation, Chemosphere, 36, pp. 1849-1865., Vol. 36, pp. 1849-1865DOI
23 
Liou M., Lu M., Chen J., 2004, Oxidation of TNT by Photo-Fenton Process, Chemosphere, Liou, M., Lu, M., and Chen, J. (2004). Oxidation of TNT by Photo-Fenton Process, Chemosphere, 57, pp. 1107-1114., Vol. 57, pp. 1107-1114DOI
24 
Lowry G., Reinhard M., 1999, Hydrodehalogenation of 1-to 3-carbon Halogenated Organic Compounds in Water Using a Palladium Catalyst and Hydrogen Gas, Environmental Science & Technology, Lowry, G. and Reinhard, M. (1999). Hydrodehalogenation of 1-to 3-carbon Halogenated Organic Compounds in Water Using a Palladium Catalyst and Hydrogen Gas, Environmental Science & Technology, 33, pp. 1905-1910., Vol. 33, pp. 1905-1910DOI
25 
Matta R., Hanna K., Chiron S., 2007, Fenton-like Oxidation of 2,4,6-trinitrotoluene Using Different Iron Minerals, Science of The Total Environment, Matta, R., Hanna, K., and Chiron, S. (2007). Fenton-like Oxidation of 2,4,6-trinitrotoluene Using Different Iron Minerals, Science of The Total Environment, 385, pp. 242-251., Vol. 385, pp. 242-251DOI
26 
Mese S., Lehmpuhl D., 2008, Hydrogen Donors for Reduction of RDX, 2, 4-DNT, and Nitrate in Groundwater, Soil & Sediment Contamination, Mese, S. and Lehmpuhl, D. (2008). Hydrogen Donors for Reduction of RDX, 2, 4-DNT, and Nitrate in Groundwater, Soil & Sediment Contamination, 17, pp. 505-515., Vol. 17, pp. 505-515DOI
27 
Nasri N., Tatt E., Hamza U., Mohammed J., Zain H., 2015, Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto r-Alumina and Bio-char, International Scholarly and Scientific Research & Innovation, Nasri, N., Tatt, E., Hamza, U., Mohammed, J., and Zain, H. (2015). Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto r-Alumina and Bio-char, International Scholarly and Scientific Research & Innovation, 9, pp. 531-537., Vol. 9, pp. 531-537Google Search
28 
Ro K., Venugopal A., Adrian D., Constant D., Qaisi K., Valsaraj K., Thibodeaux L., Roy D., 1996, Solubility of 2,4,6-trinitrotoluene (TNT) in Water, Journal of Chemical & Engineering Data, Ro, K., Venugopal, A., Adrian, D., Constant, D., Qaisi, K., Valsaraj, K., Thibodeaux, L., and Roy, D. (1996). Solubility of 2,4,6-trinitrotoluene (TNT) in Water, Journal of Chemical & Engineering Data, 41, pp. 758-761., Vol. 41, pp. 758-761DOI
29 
Shin G., Kim Y., 2002, Photocatalytic Degradation of 2,4,6-trinitrotoluene (TNT) in a TiO2 Thin Film Reactor, Journal of the Korean Society of Water and Wastewater, Shin, G. and Kim, Y. (2002). Photocatalytic Degradation of 2,4,6-trinitrotoluene (TNT) in a TiO2 Thin Film Reactor, Journal of the Korean Society of Water and Wastewater, 16, pp. 145-152., Vol. 16, pp. 145-152Google Search
30 
Smith R., Miller D., Brooks M., Widdowson M., Killingstad M., 2001, In Situ Stimulation of Groundwater Denitrification with Formate to Remediate Nitrate Contamination, Environmental Science & Technology, Smith, R., Miller, D., Brooks, M., Widdowson, M., and Killingstad, M. (2001). In Situ Stimulation of Groundwater Denitrification with Formate to Remediate Nitrate Contamination, Environmental Science & Technology, 35, pp. 196-203., Vol. 35, pp. 196-203DOI
31 
Son H., Lee S., Cho I., Zoh K., 2004, Kinetics and Mechanism of TNT Degradation in TiO2 Photocatalysis, Chemosphere, Son, H., Lee, S., Cho, I., and Zoh, K. (2004). Kinetics and Mechanism of TNT Degradation in TiO2 Photocatalysis, Chemosphere, 57, pp. 309-317., Vol. 57, pp. 309-317DOI
32 
Sriwatanapongse W., 2005, Reductive Dechlorination of Trichloroethylene by Palladium on Alumina Catalyst: a Solid-State NMR Study of Surface Reaction Mechanism, Ph.D. Dissertation, Sriwatanapongse, W. (2005). Reductive Dechlorination of Trichloroethylene by Palladium on Alumina Catalyst: a Solid-State NMR Study of Surface Reaction Mechanism, Ph.D. Dissertation, Stanford University.Google Search
33 
2012, 2012 Edition of the Drinking Water Standards and Health Advisories, U.S. EPA. (2012). 2012 Edition of the Drinking Water Standards and Health Advisories.Google Search
34 
Wei F., Zhang Y., Lv F., Chu P., Ye Z., 2011, Extraction of Organic Materials from Red Water by Metal-impregnated Lignite Activated Carbon, Journal of Hazardous Materials, Wei, F., Zhang, Y., Lv, F., Chu, P., and Ye, Z. (2011). Extraction of Organic Materials from Red Water by Metal-impregnated Lignite Activated Carbon, Journal of Hazardous Materials, 197, pp. 352-360., Vol. 197, pp. 352-360DOI
35 
Zhang M., Zhao Q., Ye Z., 2011, Organic Pollutants Removal from 2,4,6-trinitrotoluene (TNT) Red Water Using Low Cost Activated Coke, Journal of Environmental Sciences, Zhang, M., Zhao, Q., and Ye, Z. (2011). Organic Pollutants Removal from 2,4,6-trinitrotoluene (TNT) Red Water Using Low Cost Activated Coke, Journal of Environmental Sciences, 23, pp. 1962-1969., Vol. 23, pp. 1962-1969DOI
36 
Zhang X., Lin Y., Shan X., Chen Z., 2010, Degradation of 2,4,6-trinitrotoluene (TNT) from Explosive Wastewater Using Nanoscale Zero-valent Iron, Chemical Engineering Journal, Zhang, X., Lin, Y., Shan, X., and Chen, Z. (2010). Degradation of 2,4,6-trinitrotoluene (TNT) from Explosive Wastewater Using Nanoscale Zero-valent Iron, Chemical Engineering Journal, 158, pp. 566-570., Vol. 158, pp. 566-570DOI