유기경
(Gigyung Yu)
*
최지연
(Jiyeon Choi)
**
강희만
(Hee-Man Kang)
*
김이형
(Lee-Hyung Kim)
**†
Copyright © 2016, Korean Society on Water Environment
Key words
Infiltration and filtration facility (IF facility), Low impact development (LID), Rainfall range, Removal efficiency
1. Introduction
Various land uses accumulate pollutants during the dry period and these pollutants
are eventually washed off with the stormwater during the rainfall event. Such NPS
pollutants generated in urban areas cause water quality deterioration and affect the
health of aqua-ecosystem, since they have high contents of particulates, heavy metals,
chemicals and toxic materials (Boxall and Maltby, 1995; Kim et al., 2006; Maltby et al., 1995; Perdikaki and Mason, 1999; Son et al., 2008).
In order to reduce the water quality deterioration caused by NPS pollutants, the Korea
Ministry of Environment (MOE) implemented various policies to manage the NPS discharges.
NPS management policies and treatment facility installation in companies and application
of total maximum daily load were the typically performed NPS management techniques.
The pollutant mass loading of Korea's four major rivers as of 2010 was accounted for
about 67% of the total water pollution, and by 2020 it was expected be greater than
70% (MOE, 2012). With continuous point source management, the biodegradable organic pollutants (e.g.
BOD) in the rivers tend to decline, however the non-biodegradable organic matters
continually increase. For the mentioned reason, implementation of the NPS management
techniques became significantly essential (MOE, 2006).
In particular, application of low impact development (LID) techniques was ere necessary
in order to control the NPS negative effects (MOE, 2012). The LID techniques have been adopted and applied by the U.S. and Europe since the
1990s, aiming at ecosystem preservation, water circulation restoration and environmental
impact reduction through introducing decentralized stormwater techniques for various
uses. The principle of a LID technique was to efficiently manage NPS pollutants generated
after a land area development, while maintaining pre-hydrological function such as
infiltration, retention and evapo-transpiration (DER, 1999). Most of the LIDs implemented were infiltration trenches, infiltration basins, vegetated
swales, bioretention cells and constructed wetlands. The infiltration trenches and
infiltration basins were regarded as the most basic LID structure compared to the
other facilities. By adding vegetation and limiting the infiltration capabilities,
a bioretention cell or a constructed wetland could be developed. This research aims
to evaluate the applicability of an infiltration and filtration (IF) facility in various
rainfall events based on the obtained volume and pollutant reduction capabilities
from the monitored 29 events. Rainfall events in Korea were concentrated during summer
and more than 80% of the annual rainfalls were 10mm and less. Based on this, the research
also evaluates the volume and pollutant reduction of the IF facility during a 10 mm
or less storm event. Finally, the results could suggest the design and maintenance/repair
guidelines of an IF facility that could be implemented in Korea.
2. Materials and Method
The IF facility considered in the research could primarily reduce runoff volume, adsorb
and filter stormwater pollutants. To evaluate the effects of the facility's volume
and NPS pollutants reduction, and the facility's performance in various rainfall events,
this research built a test-bed. The test-bed was installed in the landscaping areas
within a college campus for feasibility of monitoring so that it can treat rainfall
runoff generated from the road surface. The IF facility structure consists of an initial
stage sedimentation tank, a trench media tank to remove fine particles, soluble materials
and a final stage sedimentation tank (Fig. 1). Table 1 shows the characteristics of the facility, and the facility area is 1.8% of catchment
area. The initial sedimentation tank has infiltration function; woodchips and gravels
were inserted to decrease the inflow (runoff) velocity and separate large particle
matters. The trench media tank has multi-media layers of woodchip, sand and gravel
to absorb and remove fine particles and soluble materials and to expand the active
place of microorganisms.
Fig. 1.
Schematic and photo of the IF facility.
Table 1.
Characteristics of the IF facility
Manual grab sampling technique was utilized for all storm events. Runoff samples were
collected using a 4-L container in the inflow and outflow part of the IF facility.
Four samples were taken every five minutes for the first 15 min with the first sample
collected as soon as runoff was evident, and two samples after 30 min and one hour,
and more samples hourly thereafter until a maximum of 12 samples. For most of the
shorter events, the scheme was modified by adjusting the number of samples until the
runoff flow ended (Kim and Kang, 2004a). Continuous measurements were also performed to monitor the inflow and outflow flow
rates every five or ten minute interval using a 5-L capacity of graduated measuring
container and a timer. The rainfall data were taken from the Korea Meteorological
Administration (KMA) with reference from weather stations nearby the monitoring sites.
Other in situ data gathered during the monitoring include antecedent dry day (ADD),
rainfall duration, average rainfall intensity, and time before effluent starts of
the hydraulic retention time (HRT). For volume reduction evaluation, a water balance
determination method was used as shown in Equation (1). Cumulative inflow rainfall
and runoff were measured, and the difference between rainfall volume and runoff volume
was regarded as the volume of infiltration, retention and evaporation.
Where, Volin = inflow volume; Volout = outflow runoff volume; Volintil = infiltration volume; Volevop = evaporation volume; Volret = retention volume; Volloss = other losses.
For the collected water samples, TSS, COD and metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb)
were analysed based on Standard Methods for the Examination of Water and Wastewater
(APHA, AWWA, and WEF, 1992). Event mean concentration (EMC) for each monitored rainfall was calculated using
Equation (2) (Irish et al., 1998; Sansalone and Buchberger, 1997).
Where, C(t) and QTRu (t) are the pollutant concentration and discharge rate at time t, respectively. The NPS pollutant removal efficiency was calculated on a basis of
mass reduction as shown in Equation (3).
3. Results and Discussion
3.1. Monitoring Results
To evaluate the volume reduction and NPS pollutants removal efficiency of the IF facility,
29 times of monitoring in total were carried out from May 2009 to August 2013. Table 2 summarizes hydrological characteristics of the measured rainfall events. Mean rainfall
depth of the 29 rainfall events was 9 mm. This monitoring result is judged to properly
reflect climate characteristics of the study area, since 70~80% of Korea's annual
rainfall events are small-scale with 10mm and less of rainfall (Maniquiz et al., 2012).
Table 2.
Summary of the average event table based on varying rainfalls
3.2. Comparison of Inflow and Outflow in IF facility
Fig. 2 showed the hydro-pollute graph of inflow and outflow part of the IF facility. The
runoff entering the inflow part of the facility from the road showed a typical first
flush phenomenon in which highly concentrated pollutants are discharged at the earlier
part of a runoff (Kim and Kang, 2004b). The outflow concentration of the pollutants is very low and stable, compared to
the inflow. Such characteristic means that the IF facility is properly constructed
for pollutant removal. Reduction of water volume and peak flow can be estimated through
flow curve change of inflow and outflow. The peak flow of inflow was very high, but
the peak flow of outflow was very low. Thus, IF facility can reduce delay runoff time,
peak flow time, runoff and peak flow volume.
Fig. 2.
Hydro-Pollute graphs of the IF facility.
3.3. Determination of EMCs
Table 3 shows the EMC calculation results of the IF facility in the three rainfall ranges
(R<5mm, 5mm<R<10mm, R>10mm). The inflow pollutant EMC was 174.6~476.5 mg/L in TSS,
155.6~316.4 mg/L in COD and 66.7~12,438 μg/L in metals. In the rainfall event with
5mm and less, the concentrations of NPS pollutants were high due to the first flush
phenomenon. On the other hand, in the rainfall event of more than 20 mm, a dilution
effect arises from high rainfall (Wu et al., 1998). The outflow pollutant EMC was 71.8~160.3 mg/L in TSS, 65.4~153.7 mg/L in COD and
85.0~6,703 μg/L in heavy metals. The outflow EMC showed lower concentrations than
the inflow EMCs. TSS, COD, Total Fe, Total Zn and Total Pb were highly reduced to
more than half of its value in the inflow.
Table 3.
Summary of the EMC based on varying rainfalls (Mean ± S.D.)
3.4. Flow Volume Reduction of the IF Facility
The regression plot displaying the relationship between the discharged and reduced
volume with rainfall depth is presented in Fig. 3. The runoff volume reduced by the IF facility was assumed to have infiltrated the
ground through the drain pipes, evaporated, and retained or stored in the system.
The amount of volume reduced by the IF facility was higher compared with the volume
discharged by the system up to approximately 5.5 mm rainfall wherein beyond this value,
the percentage of volume discharged by the system was increased with a corresponding
decrement in volume reduced by the system. Based on the storm events monitored, for
rainfall of less than 5 mm, the system reduced 52% of the total runoff volume which
entered the system. Meanwhile, for rainfall between 5 and 10 mm, the mean percentage
of runoff volume that was reduced by the system was decreased to 36%. Beyond 10 mm,
the average volume which was reduced by the system was further decreased to 26%. Since
70~80% of the total numbers of storm events per year in Korea were mostly below 10~20
mm, the IF facility is appropriate to be applied in Korea (Maniquiz et al., 2010).
Fig. 3.
Regression plot displaying the relationship of the discharged and reduced volume with
rainfall depth.
3.5. Removal Efficiency of the IF Facility
Fig. 4 shows average removal efficiency of each pollutants in the IF facility for different
ranges of the rainfall depth. The average removal efficiency of pollutants in the
IF facility was 83% in TSS, 80% in COD and 67~79% in metals. The removal efficiency
was very high, compared to a filtration facility or constructed wetland (MOE, 2014). In the case of 5 mm and less in the rainfall range, more than 80% of removal efficiency
was shown in all pollutants. On the other hand, over 10 mm in the rainfall range,
at least 60% of removal efficiency was exhibited in all pollutants. This finding suggested
that volume reduction through infiltration and retention mechanisms in the facility
plays an important role in reducing the pollutant loads from road runoff (Geronimo et al., 2013).
Fig. 4.
Comparison of the average pollutant removal efficiency based on varying rainfalls.
4. Conclusion
Urbanization arises from many environmental, hydrological and ecological problems
such as distortion of the natural water circulation system, increase in nonpoint source
pollutants in stormwater runoff, degradation of surface water quality, and damage
to the ecosystem. Due to the increase in impervious surface by urbanization, developed
countries apply low impact development (LID) techniques as an important alternative
to reduce the impacts of urbanization. Therefore, this research aims to evaluate the
applicability of an infiltration and filtration (IF) facility in various rainfall
events based on the obtained volume and pollutant reduction capabilities. The following
conclusions were drawn through this research:
-
1) The stormwater runoff entering the IF facility shows initial stage rainfall phenomenon
in which highly concentrated pollutants are discharged at the initial stage of runoff.
However, outflow shows stable concentration, and thus, IF facility can reduce delay
runoff time, peak flow time, runoff and peak flow volume and pollutant concentrations.
-
2) Based on the storm events monitored, for rainfall of less than 5 mm, the IF facility
reduced 52% of the total runoff volume which entered the system. Beyond 10 mm, the
average volume which was reduced by the system was further decreased to 26%. Since
70~80% of the total numbers of storm events per year in Korea were mostly below 10~20
mm, the IF facility is appropriate to be applied in Korea.
-
3) The NPS pollutants removal efficiency are 83%, 80% and 67~79% in TSS, COD and heavy
metals, respectively, which are very high. This finding suggested that volume reduction
through infiltration and retention mechanisms in the facility plays an important role
in reducing the pollutant loads from road runoff.
-
4) The IF facility area was 1.75% of the catchment area, however the facility treated
more than 40% and 60% runoff volume and pollutant reduction respectively for a 10
mm rainfall. Lastly, higher volume and pollutant reduction could be attained when
the LID area was at least 2% of the entire catchment.
Acknowledgements
This research was supported by a grant from Advanced Water Management Research Program
funded by Ministry of Land, Infrastructure and Transport of Korean government.
References
(1992), Standard Methods for the Examination of Water and Wastewater, American Public
Health Association, American Water Works Association, and Water Environment Federation
(APHA, AWWA, and WEF). (1992). Standard Methods for the Examination of Water and Wastewater,
18th edn, American Public Health Association, American Water Works Association, and
Water Environment Federation, Washington, DC, USA.

(1995), The Characterization and Toxicity of Sediment Contaminated with Road Runoff,
Water Research, Boxall, A. B. A. and Maltby, L. (1995). The Characterization and Toxicity
of Sediment Contaminated with Road Runoff, Water Research, 29(9), pp. 2043-2050.,
Vol. 29, No. 9, pp. 2043-2050

(1999), Low-Impact Development: an Integrated Design Approach, Department of Environmental
Resources (DER). (1999). Low-Impact Development: an Integrated Design Approach, Department
of Environmental Resources, Prince George’s County, Maryland, USA.

(2013), Treatment of Parking lot Runoff by a Tree Box Filter, Desalination and Water
Treatment, Geronimo, F. K. F., Maniquiz-Redillas, M. C., and Kim, L. H. (2013). Treatment
of Parking lot Runoff by a Tree Box Filter, Desalination and Water Treatment, 51(19-21),
pp. 4044-4049., Vol. 51, No. 19-21, pp. 4044-4049

(1998), Use of Regression Models for Analyzing Highway Stormwater Loads, Journal of
Environmental Engineering, Irish, L. B., Barrett, M. E., Malina, J. F., and Charbeneau,
R. J. (1998). Use of Regression Models for Analyzing Highway Stormwater Loads, Journal
of Environmental Engineering, 124(10), pp. 987-993., Vol. 124, No. 10, pp. 987-993

(2004a), Determination of Event Mean Concentrations and Pollutant Loadings in Highway
Storm Runoff, Journal of Korean Society on Water Environment, Kim, L. H. and Kang,
J. H. (2004a). Determination of Event Mean Concentrations and Pollutant Loadings in
Highway Storm Runoff, Journal of Korean Society on Water Environment, 20(6), pp. 631-640.
[Korean Literature], Vol. 20, No. 6, pp. 631-640

(2004b), Characteristics of First Flush in Highway Storm Runoff, Journal of Korean
Society on Water Environment, Kim, L. H. and Kang, J. H. (2004b). Characteristics
of First Flush in Highway Storm Runoff, Journal of Korean Society on Water Environment,
20(6), pp. 641-646. [Korean Literature], Vol. 20, No. 6, pp. 641-646

(2006), Determination of First Flush Criteria in Highway Stormwater Runoff using Dynamic
EMCs, Journal of Korean Society on Water Environment, Kim, L. H., Lee, E. J., Ko,
S. O., Kim, S. G., Lee, B. S., Lee, J. K., and Kang, H. M. (2006). Determination of
First Flush Criteria in Highway Stormwater Runoff using Dynamic EMCs, Journal of Korean
Society on Water Environment, 22(2), pp. 294-299. [Korean Literature], Vol. 22, No.
2, pp. 294-299

(1995), The Effects of Motorway Runoff on Freshwater Ecosystems: 1. Field Research,
Environmental Toxicology and Chemistry, Maltby, L., Forrow, D. M., Boxall, A. B. A.,
Calow, P., and Betton, C. I. (1995). The Effects of Motorway Runoff on Freshwater
Ecosystems: 1. Field Research, Environmental Toxicology and Chemistry, 14(6), pp.
1079-1092., Vol. 14, No. 6, pp. 1079-1092

(2006), Water Environment Management Master Plan, Ministry of Environment (MOE). (2006).
Water Environment Management Master Plan, Ministry of Environment, Korea. [Korean
Literature]

(2012), The 2nd Phase NPS Management Measures, Ministry of Environment (MOE). (2012).
The 2nd Phase NPS Management Measures, Ministry of Environment, Korea. [Korean Literature]

(2014), Manual for the BMPs Installation, Management and Maintenance, Ministry of
Environment (MOE). (2014). Manual for the BMPs Installation, Management and Maintenance,
Ministry of Environment, Korea. [Korean Literature]

(2010), Appropriate Methods in Determining the Event Mean Concentration and Pollutant
Removal Efficiency of a Best Management Practice, Environmental Engineering Research,
Maniquiz, M. C., Choi, J. Y., Lee, S. Y., Cho, H. J., and Kim, L. H. (2010). Appropriate
Methods in Determining the Event Mean Concentration and Pollutant Removal Efficiency
of a Best Management Practice, Environmental Engineering Research, 15(4), pp. 215-223.
[Korean Literature], Vol. 15, No. 4, pp. 215-223

(2012), Diffuse Pollutant Unit Loads of Various Transportation Land Uses, Desalination
and Water Treatment, Maniquiz, M. C., Lee, S. Y., Min, K. S., Kim, J. H., and Kim,
L. H. (2012). Diffuse Pollutant Unit Loads of Various Transportation Land Uses, Desalination
and Water Treatment, 38, pp. 308-315., Vol. 38, pp. 308-315

(1999), Impact of Road Runoff on Receiving Streams in Eastern England, Water Research,
Perdikaki, K. and Mason, C. F. (1999). Impact of Road Runoff on Receiving Streams
in Eastern England, Water Research, 33(7), pp. 1627-1633., Vol. 33, No. 7, pp. 1627-1633

(1997), Characterization of Solid and Metal Element Distributions in Urban Highway
Stormwater, Water Science and Technology, Sansalone, J. J. and Buchberger, S. G. (1997).
Characterization of Solid and Metal Element Distributions in Urban Highway Stormwater,
Water Science and Technology, 36(8-9), pp. 155-160., Vol. 36, No. 8-9, pp. 155-160

(2008), Determination of Nonpoint Pollutant Unit Loads in Toll-gate of Highway, Journal
of Wetlands Research, Son, H. G., Lee, E. J., Lee, S. Y., and Kim, L. H. (2008). Determination
of Nonpoint Pollutant Unit Loads in Toll-gate of Highway, Journal of Wetlands Research,
10(1), pp. 69-75. [Korean Literature], Vol. 10, No. 1, pp. 69-75

(1998), Characterization and Pollutant Loading Estimation for Highway Runoff, Journal
of Environmental Engineering, Wu, J. S., Allan, C. J., Saunders, W. L., and Evett,
J. B. (1998). Characterization and Pollutant Loading Estimation for Highway Runoff,
Journal of Environmental Engineering, 124(7), pp. 584-592., Vol. 124, No. 7, pp. 584-592
