The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

1 
(2014), Effects of Various TiO2 Nanostructures and Graphene Oxide on Photocatalytic Activity of TiO2, Journal of Hazardous Materials, Gao, P., Li, A., Sun, D. D., and Ng, W. J. (2014). Effects of Various TiO2 Nanostructures and Graphene Oxide on Photocatalytic Activity of TiO2, Journal of Hazardous Materials, 279, pp. 96-104., Vol. 279, pp. 96-104DOI
2 
(2012), Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO2 Adsorption Capacity, Chemistry of Materials, Garcia-Gallastegui, A., Iruretagoyena, D., Gouvea, M., Mokhtar, A. Asiri, M., Basahel, S. N., Al-Thabaiti, S. A., Alyoubi, A. O., Chadwick, D., and Shaffer, M. S. (2012). Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO2 Adsorption Capacity, Chemistry of Materials, 24(23), pp. 4531-4539., Vol. 24, No. 23, pp. 4531-4539DOI
3 
(2008), Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: a Review of Fundamentals, Progress and Problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Gaya, U. I. and Abdullah, A. H., (2008). Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: a Review of Fundamentals, Progress and Problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), pp. 1-12., Vol. 9, No. 1, pp. 1-12DOI
4 
(2012), Graphene Oxide as a Promising Photocatalyst for CO2 to Methanol Conversion, Nanoscale, Hsu, H. C., Shown, I., Wei, H. Y., Chang, Y. C., Du, H. Y., Lin, Y. G., Tseng, C. A., Wang, C. H., Chen, L. C., and Lin, Y. C. (2012). Graphene Oxide as a Promising Photocatalyst for CO2 to Methanol Conversion, Nanoscale, 5(1), pp. 262-268., Vol. 5, No. 1, pp. 262-268DOI
5 
(2013), Thermal, Electrochemica and Photochemical Conversion of CO2 to Fuels and Value-added Products, Journal of CO2 Utilization, Hu, B., Guild, C., and Suib, S. L. (2013). Thermal, Electrochemica and Photochemical Conversion of CO2 to Fuels and Value-added Products, Journal of CO2 Utilization, 1, pp. 18-27., Vol. 1, pp. 18-27DOI
6 
(2011), TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets with High Photocatalytic Activity for Removal of Pollutants, Carbon, Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., Wei, W., and Tang, H. (2011). TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets with High Photocatalytic Activity for Removal of Pollutants, Carbon, 49(8), pp. 2693-2701., Vol. 49, No. 8, pp. 2693-2701DOI
7 
(2012), TiO2 Nanoparticles Loaded on Graphene/Carbon Composite Nanofibers by Electrospinning for Increased Photocatalysis, Carbon, Kim, C. H., Kim, B. H., and Yang, K. S. (2012). TiO2 Nanoparticles Loaded on Graphene/Carbon Composite Nanofibers by Electrospinning for Increased Photocatalysis, Carbon, 50(7), pp. 2472-2481., Vol. 50, No. 7, pp. 2472-2481DOI
8 
(2014), Nano TiO2-Functionalized Magnetic-Cored Dendrimer as a Photocatalyst, Applied Catalysis B: Environmental, Kim, L. J., Jang, J. W., and Park, J. W. (2014). Nano TiO2-Functionalized Magnetic-Cored Dendrimer as a Photocatalyst, Applied Catalysis B: Environmental, 147, pp. 973-979., Vol. 147, pp. 973-979DOI
9 
(2010), Effect of Silver Doping on the TiO2 for Photocatalytic Reduction of CO2, Applied Catalysis B: Environmental, Kočí, K., Matějů, K., Obalová, L., Krejčíková, S., Lacný, Z., Plachá, D., and Šolcová, O. (2010). Effect of Silver Doping on the TiO2 for Photocatalytic Reduction of CO2, Applied Catalysis B: Environmental, 96(3), pp. 239-244., Vol. 96, No. 3, pp. 239-244DOI
10 
(2008), Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Letters, Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., and Car, R. (2008). Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Letters, 8(1), pp. 36-41., Vol. 8, No. 1, pp. 36-41DOI
11 
(2010), TiO2 Nanoparticle Photocatalysts Modified with Monolayer-Protected Gold Clusters, The Journal of Physical Chemistry C, Lee, M., Amaratunga, P., Kim, J., and Lee, D. (2010). TiO2 Nanoparticle Photocatalysts Modified with Monolayer-Protected Gold Clusters, The Journal of Physical Chemistry C, 114(43), pp. 18366-18371., Vol. 114, No. 43, pp. 18366-18371DOI
12 
(2012), Engineering TiO2 Nanomaterials for CO2 Conversion/Solar Fuels, Solar Energy Materials and Solar Cells, Liu, G., Hoivik, N., Wang, K., and Jakobsen, H. (2012). Engineering TiO2 Nanomaterials for CO2 Conversion/Solar Fuels, Solar Energy Materials and Solar Cells, 105, pp. 53-68., Vol. 105, pp. 53-68DOI
13 
(2012), Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry, Acs Catalysis, Liu, L., Zhao, H., Andino, J. M., and Li, Y. (2012). Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry, Acs Catalysis, 2(8), pp. 1817-1828., Vol. 2, No. 8, pp. 1817-1828DOI
14 
(2005), Photocatalytic Reduction of CO2 on Copper-Doped Titania Catalysts Prepared by Improved-Impregnation Method, Catalysis Communications, Nasution, H. W., Purnama, E., Kosela, S., and Gunlazuardi, J. (2005). Photocatalytic Reduction of CO2 on Copper-Doped Titania Catalysts Prepared by Improved-Impregnation Method, Catalysis Communications, 6(5), pp. 313-319., Vol. 6, No. 5, pp. 313-319DOI
15 
(2014), Trends in Global CO2 Emissions: 2014 Report, Olivier, J. G., Janssens-Maenhout, G., Muntean, M., and Peter, J. A. H. W. (2014). Trends in Global CO2 Emissions: 2014 Report, Hague: PBL Netherlands Environmental Assessment Agency, pp. 10-11., pp. 10-11Google Search
16 
(2013), History of Graphene Oxide and Future Direction, Korean Industrial Chemistry News, Park, S. J. (2013). History of Graphene Oxide and Future Direction, Korean Industrial Chemistry News, 16(3), pp. 1-5. [Korean Literature], Vol. 16, No. 3, pp. 1-5Google Search
17 
(2012), Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity, Acs Catalysis, Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., and Balkus Jr, K. J. (2012). Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity, Acs Catalysis, 2(6), pp. 949-956., Vol. 2, No. 6, pp. 949-956DOI
18 
(2000), Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, Chemical Communications, Sayama, K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., Abe, Y., Sugihara, H., and Arakawa, H. (2000). Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, Chemical Communications, (13), pp. 1173-1174., No. 13, pp. 1173-1174DOI
19 
(2010), Graphene Based Electrochemical Sensors and Biosensors: a Review, Electroanalysis, Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., and Lin, Y. (2010). Graphene Based Electrochemical Sensors and Biosensors: a Review, Electroanalysis, 22(10), pp. 1027-1036., Vol. 22, No. 10, pp. 1027-1036DOI
20 
(2006), Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing, Catalysis Today, Song, C. (2006). Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing, Catalysis Today, 115(1-4), pp. 2-32., Vol. 115, No. 1-4, pp. 2-32DOI
21 
(2012), Recent Progress in the Electrochemical Conversion and Utilization of CO2, Catalysis Science and Technology, Spinner, N. S., Vega, J. A., and Mustain, W. E. (2012). Recent Progress in the Electrochemical Conversion and Utilization of CO2, Catalysis Science and Technology, 2(1), pp. 19-28., Vol. 2, No. 1, pp. 19-28DOI
22 
(2013), Reduced Graphene Oxide-TiO2 Nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Convertsion of Carbon Eioxide, Nanoscale Research Letters, Tan, L. L., Ong, W. J., Chai, S. P., and Mohamed, A. R. (2013). Reduced Graphene Oxide-TiO2 Nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Convertsion of Carbon Eioxide, Nanoscale Research Letters, 8(1), pp. 1-9., Vol. 8, No. 1, pp. 1-9DOI
23 
(2015), Plasmon-Enhanced Reverse Water Gas Shift Reaction over Oxide Supported Au Catalysts, Catalysis Science & Technology, Upadhye, A. A., Ro, I., Zeng, X., Kim, H. J., Tejedor, I., Anderson, M. A., Dumesic, J. A., and Huber, G. W. (2015). Plasmon-Enhanced Reverse Water Gas Shift Reaction over Oxide Supported Au Catalysts, Catalysis Science & Technology.Google Search
24 
(2008), TiO2-Graphene Nanocomposites, UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS nano, Williams, G., Seger, B., and Kamat, P. V. (2008). TiO2-Graphene Nanocomposites, UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS nano, 2(7), pp. 1487-1491., Vol. 2, No. 7, pp. 1487-1491DOI
25 
(2012), Sonochemical Fabrication of Novel Square-Shaped F Doped TiO2 Nanocrystals with Enhanced Performance in Photocatalytic Degradation of Phenol, Journal of Hazardous Materials, Yu, C., Fan, Q., Xie, Y., Chen, J., and Jimmy, C. Y. (2012). Sonochemical Fabrication of Novel Square-Shaped F Doped TiO2 Nanocrystals with Enhanced Performance in Photocatalytic Degradation of Phenol, Journal of Hazardous Materials, 237, pp. 38-45., Vol. 237, pp. 38-45DOI
26 
(2011), Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2, ACS Applied Materials & Interfaces, Yui, T., Kan, A., Saitoh, C., Koike, K., Ibusuki, T., and Ishitani, O. (2011). Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2, ACS Applied Materials & Interfaces, 3(7), pp. 2594-2600., Vol. 3, No. 7, pp. 2594-2600DOI
27 
(2013), Bicrystalline TiO2 with Controllable Anatase Brookite Phase Content for Enhanced CO2 Photoreduction to Fuels, Journal of Materials Chemistry A, Zhao, H., Liu, L., Andino, J. M., and Li, Y. (2013). Bicrystalline TiO2 with Controllable Anatase Brookite Phase Content for Enhanced CO2 Photoreduction to Fuels, Journal of Materials Chemistry A, 1(28), pp. 8209-8216., Vol. 1, No. 28, pp. 8209-8216DOI